Otomatisasi Kran Air dan Sabun di RW 08 KelurahanJoharBaru Berbasis Sensor HC- SR04 dan Panel Surya

¹⁾Ali Muhammad Faadhil*, ²⁾Ghofurur Nawangsah, ³⁾Mukminin, ⁴⁾Lerry Salasi Saptan ¹⁾²⁾³⁾⁴⁾Teknik Informatika, St ilmuKomputerCiptaKaryaInformatika, Jakarta, Indonesia Email Corresponding: ali21fadhil@gmail.com*

INFORMASI ARTIKEL ABSTRAK KataKunci: Dalam penanggulangan pencegahan penyebaran covid-19 juga masih ada beberapa telah COVID-19 dianjurkan pemerintah menggunakan melakukan pembersihan tangan sesudah bersentuhan. Mikrokontroler Arduino Tetapi metode pembersihan tangan dikeramaian yang telah dilakukan masih banyak di sensor HC-SR04 lingkungan masyarakat yang melanggar anjuran dari pemerintah yang dikarenakan individu Solenoid Valve masih menyentuh keran & sabun memakai tangan menggunakan bergantian. Salah satu cara untuk mencegah penyebaran COVID-19 ialah dengan mempraktekkan perilaku hidup bersih dan sehat, salah satunya dengan rutin mencuci tangan dengan sabun dan air. Pengujian ini dilakukan dengan cara. System Mikro kontroler Arduino, merupakan sebuah mikroprosesor yang lengkap dan Memudahkan sensor HC-SR04 digunakan dalam suatu Mikro kontroler, diimplementasikan menggunakan software dari Arduino yang bernama Arduino IDE yang dimana memiliki kemiripan dengan bahasa C, Solenoid Valve bekerja sesuai dengan perintah dari Arduino yang

solenoid valve dapat menutup dan membuka sendiri.

ABSTRACT

Keywords:

COVID-19 Arduino Microcontroller sensor HC-SR04 Solenoid Valve In tackling the prevention of the spread of Covid-19, there are also some recommendations by the government to clean hands after touching, however, the method of cleaning hands in the crowd that has been carried out is still widely carried out in the community which violates recommendations from the government because people still touch the tap & soap using their hands alternately. One way to prevent the spread of COVID-19 is to practice clean and healthy living habits, one of which is by washing your hands regularly with soap and water. This test is carried out in the following way. Arduino Microcontroller System, is a complete microprocessor and makes it easy for the HC-SR04 sensor to be used in a microcontroller, implemented using software from Arduino called Arduino IDE which is similar to C language, Solenoid Valve works according to commands from Arduino which gets signals from ultrasonic sensor. When someone is about to wash their hands and the solenoid valve can close and open by itself.

dimana mendapati syarat dari sensor ultrasonik. Ketika seseorang hendak mencuci tangan dan

This is an open access article under the <a>CC-BY-SA license.

e-ISSN: 2745 4053

I. PENDAHULUAN

Penelitian kepada masyarakat umum merupakan salah satu pilar pengguruan tinggi STIKOM CKI Jakarta Jurursan Teknik informatika, Selain program pendidikan di STIKOM CKI setiap tahun semester akhir melasanakan tugas penelitian terhadap lingkungan masyarakat di RW 08 Kelurahan Johar Baru, Pada

1841

pandemi wabah virus covid 19 yang telah menyebarkan di dunia termasuk di negara kita sendiri yaitu Indonesia (Yudi Chandra, Erick Radwitya, 2021).

Dalam penanggulangan pencegahan penyebaran covid-19 juga masih ada beberapa telah dianjurkan pemerintah menggunakan melakukan pembersihan tangan sesudah bersentuhan. tetapi metode pembersihan tangan dikeramaian yang telah dilakukan masih banyak di lingkungan masyarakat yang melanggar anjuran dari pemerintah yang dikarenakan individu masih menyentuh keran & sabun memakai tangan menggunakan bergantian. Pencegahan misalnya ini adalah suatu pencegahan yang keliru.

Salah satu cara untuk mencegah penyebaran COVID-19 adalah dengan mempraktekkan perilaku hidup bersih dan sehat, salah satunya dengan rutin mencuci tangan dengan sabun dan air(Imam Rofiki & Siti Roziah Ria Famuji, 2020). Pentingnya mencuci tangan dengan sabun dan air adalah untuk mencegah masuknya virus melalui mulut, hidung atau mata setelah menyentuh permukaan atau benda yang terdapat virus di atasnya. Oleh karena itu, keran untuk cuci tangan harus disediakan, terutama di tempat umum.

RW 09 Kelurahan Johar Baru merupakan salah satu RW DKI di Kelurahan, Kota Johar Baru, Ibu Kota Provinsi Jakarta. Masyarakat telah diedukasi untuk beradaptasi dengan penerapan normal baru dalam upaya pencegahan COVID-19. Di beberapa tempat umum seperti kantor RW 09, Alpetra dan mushola atau masjid, tersedia air dan sabun untuk cuci tangan. Namun keran yang digunakan masih dibuka dengan tangan. Virus dapat menyebar di keran yang disentuh banyak orang dan berpotensi berpindah ke tangan orang lain. Berdasarkan kondisi tersebut, maka dibuatlah mesin cuci tangan yang terdiri dari keran otomatis dan sabun cair otomatis (Gusa et al., 2021).

Kran yang menguras sendiri tanpa menyentuh kran akan lebih aman dan tidak menyebarkan virus. Sensor jarak HC-SR04 dapat mendeteksi keberadaan tangan pada jarak tertentu di bawah keran (Sukri, 2019).

Keran otomatis untuk cuci tangan harus memiliki wadah berisi air yang cukup untuk banyak orang. Jika tidak memungkinkan, wadah penyimpanan air perlu diisi ulang. Hal ini tentu saja sangat memudahkan, sehingga diperlukan pengisian tangki secara otomatis. Ketinggian air dalam wadah dapat dideteksi menggunakan sensor ultrasonik. Ketika ketinggian air di dalam wadah tidak terdeteksi sehingga tidak dapat berkerja secara otomatis maka dilakukan menyuntikkan air ke dalam wadah(Wagino & Arafat, 2018). Tujuan yang ingin di capai pada penelian ini merupakan menjadi berikut:

- a. Mengurangipenyebaran virus Corona 19
- b. Efektivitaspenggunaankeran air
- c. Menguranginjumlah air yang menguntungkanuntukmencucitangan

II. MASALAH

Berdasarkan latar belakang yang di sebutkan, maka ruang lingkup masalah yang di dalam pengabdian masyarakat tersebut, yaitu:

- A. karena masih menggunakan kran air konvensional penyembaran virus covid 19 masih dapat terjadi di karenakan masih menyentuh kran air.
- B. Karenamasihmemakaikran air konvensionalmakahalsepertiinimampumenciptakanpemborosan air masihsering.

Gambar 1. Tempat berlangsung

III. KAJIAN PUSTAKA

Terdapat beberapa penelitian dalam kran air otomatis antara lain Rizky M. Rosyidi, Zaenuddin, Mohammad Ramdhani Raharjo pada tahun 2023 menggunakan Arduino UNO sebagai pusat kendali, beserta beberapa alat lainnya seperti sensor ultrasonik HC-SR04, sensor LM35DZ, servo MG90S, LCD 16x2, kabel jumper dan adaptor. Sensor ultrasonik HC-SR04 digunakan untuk mendeteksi objek atau pengguna yang akan menggunakan kran agar kran dapat hidup dan mati secara otomatis, dan sensor suhu LM35DZ menerima data suhu tubuh pengguna dan menampilkannya pada layar LCD alat(Rosyidi, 2021).

Pada tahun 2022, Kadek Juliarta, Fajri Pratama melakukan penelitian dengan membuat sensor kran air otomatis yang akan melakukan berhenti selama 4 detik setelah sensor tidak membaca objek, untuk sabun cuci tangan akan hidup saat sensor dihalangi dan langsung mati setelah sensor tidak membaca objek(Wijayanti & Informatika, 2022). Pada tahun yang sama, Permadi Primadana, Fahrizal Zulkarnain membuat peralatan cuci tangan otomatis dengan harapan akan membuat cuci tangan menjadi lebih mudah dan praktis. Pengguna tidak perlu lagi memutar kran, cukup letakkan tangan pada posisi tertentu, air akan mengalir keluar secara otomatis (Muhammadiyah & Utara, n.d.).

Pada tahun 2021, Mohammad Taufan Asri Zaen, Yuliadi, Khairun nazri melakukan penelitian dengan membuat prototipe keran otomatis yang dilengkapi dengan sensor pendeteksi gerakan, sensor ultrasonik HC-SR04, dan motor servo sebagai penggerak untuk membuka dan menutup katup agar air mengalir. Keluar dari keran dan relay untuk memutuskan atau menghubungkan sirkuit agar bekerja secara otomatis(Mohammad Taufan Asri Zaen1, Yuliadi & Syah, 2021). Pada tahun yang sama Risky Ramadhani, Rangga Sanjaya membuat sistem pemantauan penggunaan air dapat menjadi solusi pemantauan penggunaan air berbasis IoT dengan menggunakan platform Thing Speak. Oleh karena itu Olek tertarik untuk merancang sistem informasi pemantauan air berbasisIo TNodeMCU ESP8266 untuk kran air otomatis di UPTD Panti Sosial Rehabilitasi Penyandang Gangguan Sensorik – Palembang (Ramadhani et al., 2021).

Pada tahun 2020, RikaWahyuni Arsianti1, Rian Kurniawan, Fairul, Mulyadi, Ana Damayanti membuat keran otomatis ini akan mengalirkan air jika terdeteksi ada benda di bawah keran. Jadi tidak perlu memegang kran untuk mengalirkan dan menghentikan aliran air. Hal ini penting untuk kebersihan tangan agar virus tidak menyebar. Dari hasil kampanye tersebut, para penggiat UMKM Kenko memulai produksi Keripik Pisang Kenko sesuai protokol kesehatan. Jika UMKM mampu melanjutkan aktivitas ekonomi di masa

pandemi Covid-19, perekonomian Indonesia akan mulai pulih dari krisis yang sudah terjadi(Arsianti et al., 2020).

Pada tahun 2019, Romi Shaputra, Pamor Gunoto, Muhammad Irsyam menggunakan sensor ultrasonik untuk mendeteksi keberadaan benda mandi atau anggota tubuh manusia. Cara kerja alat ini adalah pada saat arduino uno dinyalakan maka arduino uno menginisialisasi semua komponen yang ada pada alat tersebut. Kemudian ketika sensor ultrasonik mendeteksi adanya objek pada jarak ≤30cm, relay akan aktif dan membuka solenoid valve. Dan ketika sensor ultrasonik tidak mendeteksi keberadaan objek dengan jarak ≤30cm, relai terputus dan katup solenoida juga tertutup. Jarak deteksi sensor ultrasonik pada alat adalah ≤ 30 cm (Shaputra, 2019). Pada tahun yang sama, Sri Hartanto, Risky Eko Fitriyanto menggunakan sensor jarak ultrasonik hc-sr04 dan pompa akuarium, diproses oleh mikro kontroler Arduino dengan ATMega328P. ketika sensor hc-sr04 membaca objek, mengirimkan data ke arduino, kemudian arduino memerintahkan pompa air untuk mengalirkan air melalui relay (Hartanto Sri & Fitriyanto Eko Risky, 2019).

IV. METODE

Wilayah studi peneti anter letak di RW 08 Kelurahan Johar Baru. Alasan pemilihan tempat ini adalah untuk mencegah penyebaran virus Corona-19, efisiensi penggunaan keran dan pengurangan jumlah air yang berguna untuk cuci tangan. Metode penelitian ini menggunakan metode penelitian dan pengembangan (Research and Develompment). Metode penilitian Research and Develompment yang disingkat R&D adalah metode penelitian yang digunakan untuk menghasilkan produk tertentu dan menguji dalam kefiktifan pada produk tersebut. Penelitian ini mengasailkan untuk implementasi otomatisasi kran air yang mengunakan dua tipe merek sensor E 18, sensor ultrasonic HC-SR04 dan solar panel surya untuk mendapatkan sebuah arus tegangan bisa juga menggunakan aki 12V DC agar dapat dialirkan kedalam sebuah motor servo berbasis Arduino Uno. Objek penelitian ini adalah kran air otomatisasi berupa langsung tanpa proses buka tutup manusia didalam dengan parameter yang sudah di tentukan oleh sensor (Wuryanto et al., 2019).

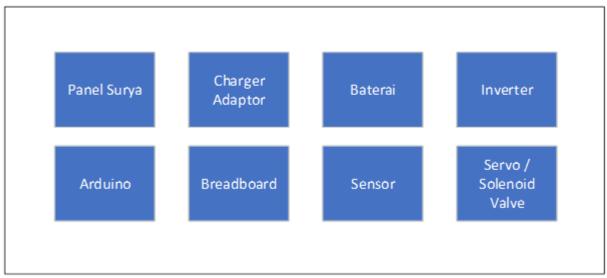
1 Metode Pengumpulan Data

Tahapan awal adalah dengan mengumpulkan semua data yang terkait dengan permasalahan pengontrolan keran air otomatis dengan sensor ultrasonic HC- SR04 dan pengukur suhu pengguna kran ini untuk pencegahan virus corona, adalah dengan menggunakan metode

a. Studi pustaka

Selain melakukan kegiatan di atas penulis juga mencari referensi yang dapat dijadikan dalam penyusunan laporan Kuliah Kerja Praktek, dilakukan dengan cara mengumpulkan informasi yang terdapat dalam artikel, buku-buku, jurnal, internet, karya ilmiah serta sumber lainnya yang ada kaitannya dengan topic penelitian

b. Observasi


Yaitu melakukan pengamatan langsung yang telah ada serta komponen komponen yang diperlukan dalam cara pembuatan Keran Air otomatis dan Secara Otomatis Menggunakan uno r3 with cable- uno complatible Atmega 328p

c. Wawancara

Adalah untuk memperoleh data dengan cara berdiskusi secara langsung dan proses tanya-jawab dengan petugas rw setempat bertujuan supaya alat yang kami ajukan berjalan dengan regelitas terbaik.

2 PerancanganMekanik

Perancanganmekanikmenggambarkandesainkomponenmekanis yang digunakanuntukmembangun kran air otomatis(Besari et al., 2009).

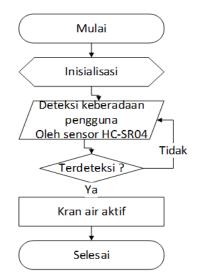
Gambar 2. Komponen mekanik.

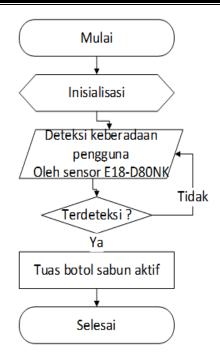
3 Perancangan Elektrik

Perancangan Desain kelistrikan menggambarkan desain komponen kelistrikan yang digunakan untuk membangun sistem kran air otomatis. Pada gambar di bawah ini dapat dilihat peralatan yang digunakan pada keran otomatis.

Gambar 3, Perancangan disain alur kelistrikan.

4 Desain Produk


Desain keran otomatis memiliki kotak yang berisi semua komponen listrik dari keran otomatis. Kemudian lanjutkan dengan memasang solenoid valve di antara pipa yang menghubungkan sumber air dan keranumum. Di bawahini Anda dapat melihat gambar yang menjelaskan desain produk keran otomatis (Reza et al., 2010).


Gambar 4, Desain Produk.

5 Perencanaan Perangkat Lunak

Pada perancangan software kran air otomatis ini digunakan sensor untuk membaca jarak objek agar dapat diketahui jika ada tangan yang berada di bawah kran. Arduino akan menerima sinyal dari sensor ultrasonik kemudian akan menghidupkan dan mematikan solenoid valve. Gambar berikut menunjukkan diagram (Flawchar) kran otomatis (AFDALI et al., 2018).

Gambar 5, Flawchar kran air otomatis

Gambar 6, Flawchar Sabun Otomatis.

Dalam flowchart diatas menjelaskan menampilkan cara kerja alat pada suatu rangkaian yang akan dibuat. dapat di awali melalui star yaitu dengan perancangan konsep kran air otomatis pada perancangan alat pada sensor HC-SR04 pada kran air diaktifkan maka membaca jarak dijadikan untuk sebagai nilai inputan mengotrol adaptor dan motor servo apabila sebuah objeck terdeteksi diluar jangkauan dengan jarak ditentukan (Ernida et al., 2021).

6 Perencanaan Perangkat Keras

Perancangan system perangkat keras (Hadware) ,dibutuhkan beberapa cara yang akan dibuat menjadi 3 bagian dikelompokkan agar dapat dilakukan dalam tahap pengujian digunakan melalui sebuah proses untuk di jalankan suatu program mengunakan aplikasi Arduino Uno sedangkan komponen pendukung jenis lainya berupa chip mikro kontroler, leptop,solenoid valve,sensor, HC-SR 04 Ultrasonik,relay,sensor E18,servo,botol sabun dan galon air berukuran 15 liter(Sastria, 2020). System Perangkat lunak(software) Arduino poreses komponen digunakan untuk pembuatan alat yang dibangun menjadi lebih efesien sedangkan alat penunjang antara lain, adaptor 12v charge panel,motor servo ,aki ,projeck boardo beng ,timah dan solder listrik (Nurhayata & Santiyadnya, 2017).

7 Melakukan pengujian solenoid Valve

Melakukan pengujian solenoid untuk menentukan apakah perangkat keras berfungsi dengan benar. Pengujian dilakukan dengan menghubungkan solenoid valve ke mikro kontroler Arduino dan memasukkan kode script yang dibuat pada program Arduino IDE.

8 Melakukan pengujian sensor ultrasonik

Melakukan pengujian sensor ultrasonik untuk melihat apakah sensor ultrasonik berfungsi dengan baik Pengujian dilakukan atau menghubungkan suatu arus daya listrik pada sensor ultrasonik yang akan di dapat mikro kontroler, kemudian memasukkan script kode yang dibuat dengan program Arduino IDE Jika jaraknya benda 0-10cm, maka katup solenoid valve akan terbuka, jika jarak ini terlampaui, katup solenoid akan menutup (Ikhsan & Risfendra, 2020).

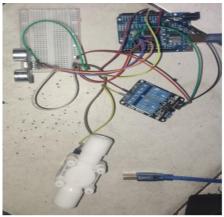
1847

9 Melakukan pengujian interaksi solenoid valve dan sensor ultrasonik

Melakukan pengujian interaksi solenoid valve dan sensor ultrasonik dengan menghubungkan kedua perangkat keras tersebut ke mikro kontroler Arduino kemudian masuk ke program Arduino IDE. Keran otomatis akan dipasang di area cuci tangan, yang akan mati dan hidup secara otomatis ketika seseorang ingin mencuci tangan.

V. HASIL DAN PEMBAHASAN

1. Hasil Perancangan Mekanik


Hasil perancangan mekanik yang terdiri dari kotak yang terdapat pada bagian belakang tempat cucitangan yang digunakan sebagai wadah alat-alatnya. Pada kotak Panel ini telah dilubangi untuk menyesuaikan komponen-komponen yang akan dipakai, dan untuk jalur kabel yang nantinya akan dipasangkan kemasingmasing komponen.

Gambar 7, HasilPerencanaanMekanik.

2 Hasil Perancangan Elektrik

Perancangan kelistrikan keran air otomatis ini memiliki mikro kontroler Arduino sebagai komponen utamanya. Katup solenoid terhubung ke relai untuk hidup / mati dan yang lainnya terhubung ke GND yang termasuk dalam Arduino.

Gambar 8, HasilPerencanganElektrik.

3 Hasil Perancangan

Software Mengaktifkan solenoid valve, berikut hasil coding di Arduino IDE

```
kran_air | Arduino 1.8.20 Hourly Build 2021/12/20 07:33
<u>File Edit Sketch Tools Help</u>
   ④ 🗈 🖸 🛂
 kran_air §
#define aktif 10
#define nonaktif 16
#define e18 6
#define kranAir 2
#define echoPin 3
#define trigPin 4
#include <Servo.h>
Servo myservo;
int data;
int count = 0;
int angle = 0;
int angleStep = 50;
bool airPenuh = true;
long duration, cm;
long previousMillis = 0;
long interval = 100;
```

Gambar 9, Coding Hasil Perencanaan

4 Hasil Pengujian Solenoid Valve

Melakukan pengujian ini untuk menentukan apakah solenoid valve berfungsi dengan baik. Pengujian dilakukan dengan menghubungkan solenoid valve dengan mikro kontroler Arduino yang menyediakan kode scripting pada program Arduino IDE. Kemudian solenoid valve akanmenjalankan perintah untukmembuka dan menutup solenoid valve sesuai dengan kode script, sehingga akan terdengar bunyi tik yang menandakan bahwa solenoid valve sudah bekerja dengan normal.

```
kran_air

void bacaAir() {
    digitalWrite(trigPin, HIGH);
    delayMicroseconds(5);
    digitalWrite(trigPin, LoW);
    delayMicroseconds(10);
    digitalWrite(trigPin, LoW);

    duration = pulseIn(echoPin, HIGH);
    cm = (duration/2) / 29.1;

    Serial.print(cm);
    Serial.print("cm");
    Serial.println();
    delay(50);
}
```

Gambar 10, Kode Script di Solenoid Valve

Berikut adalah hasil pengujian sensor ultrasonik. Terlihat bahwa ketika penghalang diletakkan pada jarak 0 cm, LED menyala, menandakan bahwa objek berada<= 0 cm dari sensor ultrasonic

1849

```
20:48:45.465 -> 0cm
20:48:45.512 -> Kran Aktif
20:48:46.218 -> 0cm
20:48:46.264 -> Kran Aktif
20:48:46.968 -> 0cm
20:48:47.014 -> Kran Aktif
20:48:47.719 -> 0cm
20:48:47.766 -> Kran Aktif
20:48:48.470 -> 0cm
20:48:48.470 -> 0cm
20:48:48.470 -> 0cm
20:48:48.516 -> Kran Aktif
20:48:49.271 -> Kran Aktif
20:48:49.271 -> Kran Aktif
```

Gambar 11, HasilPengujianKran

5 Hasil Pengujian Interaksi Solenoid Valve dan Sensor Ultrasonik

Pengujian ini dilakukan untuk mengetahui apakah produk akhir dari keran otomatis akan berfungsi dengan baik. Pengujian ini dilakukan dengan cara memasang solenoid valve pada keran, lalu memasang sensor di bawah keran untuk mendeteksi jika ada tangan di bawah keran, jika ada tangan di bawah keran maka sensor akan mengirim sinyal ke arduino , dan katup solenoid akan terbuka secara otomatis.

VI. KESIMPULAN

Kran air otomatis adalah sebuah alat yang dapat mempermudah pekerjaan manusia. Kran air otomatis memiliki terdiri dari alat Solenoid Valve dan sensor ultrasonik sebagai komponen utama. Mikrokon troler Arduino adalah sebuah mikro prosesor yang lengkap dan mudah digunakan.oleh sensor HC-SR04 dan panel surya, maka Mikro kontroler dapat diimplementasikan menggunakan software dari Arduino dimana memiliki kemiripan dengan bahasa C. Solenoid Valve bekerja sesuai dengan perintah dari Mikro kontroler Arduino yang dimana mendapat isyarat dari sensor ultrasonik. Ketika sesorang hendak mencuci tangan dan solenoid valve dapat menutup dan membuka sendiri.

UCAPAN TERIMA KASIH

Sebagai peneliti kami ucapkan terima kasih kepada ketua RW 09 kelurahan Johar baru yang telah mengizinkan penelitian di tempat tersebut.

DAFTAR PUSTAKA

- AFDALI, M., DAUD, M., & PUTRI, R. (2018). Perancangan Alat Ukur Digital untuk Tinggi dan Berat Badan dengan Output Suara berbasis Arduino UNO. *ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 5*(1), 106. https://doi.org/10.26760/elkomika.v5i1.106
- Arsianti, R. W., Kurniawan, R., Damayanti, A., & Pratiwi, S. R. (2020). ARSY: Aplikasi Riset kepada Masyarakat Protokol Kesehatan pada UMKM Kenko Application of Automatic Water Faucet as Health Protocols at UMKM Kenko. 1(2), 77–82.
- Besari, A. R. A., Zamri, R., Yusaeri, A., Md.Dan, M. P., & Prabuwono, A. S. (2009). Automatic ablution machine using vision sensor. 2009 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2009 Proceedings, 1(October), 506–509. https://doi.org/10.1109/ISIEA.2009.5356425
- Ernida, Novianti, D., & Damanik, H. D. L. (2021). Pengetahuan, Sikap Dan Perilaku Cuci Tangan Pakai

https://doi.org/10.36086/salink.v1i1.658

- Gusa, R. F., Naruari, D., & Yandi, W. (2021). Penerapan Alat Cuci Tangan Otomatis untuk Masyarakat Kelurahan Bukit Merapin Kota Pangkalpinang. *Abimanyu: Journal of Community Engagement*, 2(1), 54–59. https://doi.org/10.26740/abi.v2i1.11903
- Hartanto Sri, & Fitriyanto Eko Risky. (2019). RANCANG BANGUN SISTEM SALURAN KRAN AIR OTOMATIS BERBASIS ARDUINOATMEGA328PPenerbit Universitas Krisnadwipayana (Dikelola Oleh Fakultas Teknik Prodi Teknik Elektro) JURNAL ELEKTROKRISNA UNIVERSITAS KRISNADWIPAYANA. *Jurnal Ilmiah Elektrokrisna*, 7(3), 125–132.
- Ikhsan, D. M., & Risfendra, R. (2020). Sistem Peringatan Otomatis pada Jalan Tikungan. *JTEV (Jurnal Teknik Elektro Dan Vokasional)*, 6(2), 133. https://doi.org/10.24036/jtev.v6i2.108589
- Imam Rofiki, & Siti Roziah Ria Famuji. (2020). Kegiatan Penyuluhan dan Pemeriksaan Kesehatan untuk Membiasakan PHBS bagi Warga Desa Kemantren. *Dinamisia : Jurnal Pengabdian Kepada Masyarakat*, 4(4), 628–634. https://doi.org/10.31849/dinamisia.v4i4.3992
- Mohammad Taufan Asri Zaen1, Yuliadi, K., & Syah, C. H. (2021). Rekayasa Prototype Kran Otomatis Berbasis Arduino Uno. *Building of Informatics, Technology and Science (BITS, 3*(2), 101–108. https://doi.org/10.47065/bits.v3i2.1008
- Muhammadiyah, U., & Utara, S. (n.d.). Penyediaan Alat Pencuci Tangan Otomatis Berbasis Sensor Jarak Untuk Pencegahan Penyebaran Covid ' 19. 208–214.
- Nurhayata, I. G., & Santiyadnya, N. (2017). Pengembangan Sistem Kontrol Otomatis Kran Solenoid Berbasis Radio Frequency Identification Pada Sistem Pelayanan Air Minum Desa. *Seminar Nasional Riset Inovatif*, 145–152.
- Ramadhani, R., Sanjaya, R., Studi, P., Informasi, S., Adhirajasa, U., Sanjaya, R., Monitoring, I., Air, P., Kran, P., Otomatis, A., & Iot, B. (2021). *Sistem Informasi Monitoring Penggunaan Air Pada Kran Air Otomatis Berbasis IoT NODEMCU ESP8266*. 2(2), 162–170.
- Reza, S. M. K., Tariq, S. a M., Reza, S. M. M., Ao, S. I., Douglas, C., Grundfest, W. S., & Burgstone, J. (2010). Microcontroller Based Automated Water Level Sensing and Controlling: Design and Implementation Issue. *World Congress on Engineering and Computer Science, Vols 1 and 2, I*, 220–224.
- Rosyidi, R. M. (2021). Rancang Bangun Kran Air Otomatis Dengan Sensor Ultrasonic Dan Pengukur Suhu Pengguna Kran Untuk Pencegahan Virus http://eprints.uniska-bjm.ac.id/4843/
- Sastria, G. (2020). Keran Air Otomatis Menggunakan Sensor Ultrasonic Dalam Upaya Pencegahan Covid-19. *Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI)*, 2019, 2579–5406. https://nasional.kompas.com/
- Shaputra, R. (2019). Kran Air Otomatis Pada Tempat Berwudhu Menggunakan Sensor Ultrasonik Berbasis Arduino Uno. *Sigma Teknika*, 2(2), 192. https://doi.org/10.33373/sigma.v2i2.2085
- Sukri, H. (2019). Perancangan Mesin Cuci Tangan Otomatis dan Higienis Berbasis Kamera. *Rekayasa*, 12(2), 163–167. https://doi.org/10.21107/rekayasa.v12i2.5540
- Wagino, W., & Arafat, A. (2018). Monitoring Dan Pengisian Air Tandon Otomatis Berbasis Arduino. *Technologia: Jurnal Ilmiah*, 9(3), 192. https://doi.org/10.31602/tji.v9i3.1414
- Wijayanti, W. E., & Informatika, T. (2022). *Implementasi Kran Air Dan Sabun Cuci Tangan Otomatis Menggunakan Sensor Infrared Di Badan*. 2(2), 65–69.
- Wuryanto, A., Hidayatun, N., Rosmiati, M., & Maysaroh, Y. (2019). Perancangan Sistem Tempat Sampah Pintar Dengan Sensor HCRSF04 Berbasis Arduino UNO R3. *Paradigma Jurnal Komputer Dan Informatika*, 21(1), 55–60. https://doi.org/10.31294/p.v21i1.4998
- Yudi Chandra, Erick Radwitya, S. I. A. (2021). Perencanaan Dan Implementasi Penggunaan Keran Wastafel Otomatis Berbasis Mikrokontroler Arduino Uno Dalam Penanggulangan Pencegahan Covid-19 Pada Pasar Tradisional Desa Suka Maju. *Jurnal Pengabdian Pada Masyarakat*, 1(1), 30–34.