Volume 6 No 3 Edisi Mei - Agustus 2025, Page 1960-1965
ISSN 2808-005X (media online)
Available Online at http://ejournal.sisfokomtek.org/index.php/jumin

Analisis Pengaruh Fluktuasi Sumber Daya Listrik Terhadap Keakuratan Pengukuran Daya Dengan Teknik Pembobotan Di Jaringan Distribusi

Gunawan Sihombing¹, Muhammad Wahyu Pratama²

^{1,2}Teknik Elektro ,Fakultas Teknik, Universitas Amir Hamzah, Medan Email: gunawansihombing6939@gmail.com

Abstrak—Pengukuran daya listrik merupakan elemen penting dalam sistem distribusi energi, yang berhubungan langsung dengan efisiensi, penghematan energi, dan pengelolaan biaya. Namun, fluktuasi sumber daya listrik, khususnya yang berasal dari energi terbarukan seperti tenaga surya dan angin, sering kali mempengaruhi keakuratan pengukuran daya dalam jaringan distribusi. Penelitian ini bertujuan untuk menganalisis pengaruh fluktuasi sumber daya listrik terhadap keakuratan pengukuran daya dan mengevaluasi efektivitas teknik pembobotan dalam meningkatkan akurasi pengukuran pada sistem distribusi listrik. Dengan menggunakan pendekatan eksperimen kuantitatif, hasil penelitian menunjukkan bahwa penerapan teknik pembobotan dapat secara signifikan mengurangi kesalahan pengukuran daya, dengan penurunan kesalahan rata-rata sebesar 4.9%, serta pengurangan MAE dan RMSE. Pembobotan ini memberikan perhatian lebih pada fluktuasi daya, baik dari sisi waktu, jenis sumber daya, dan intensitas beban, sehingga menghasilkan pengukuran yang lebih stabil dan akurat. Penelitian ini menunjukkan bahwa teknik pembobotan efektif dalam meningkatkan stabilitas dan efisiensi pengukuran daya, terutama dalam menghadapi fluktuasi sumber daya yang dinamis. Diharapkan hasil penelitian ini dapat menjadi dasar pengembangan metode pengukuran yang lebih efisien untuk sistem distribusi listrik yang mengandalkan sumber daya terbarukan

Kata Kunci: Fluktuasi Sumber Daya Listrik, Pengukuran Daya, Pembobotan, Energi Terbarukan, Efisiensi Pengukuran

Abstract– Electric power measurement is one of the important elements in the energy distribution system that is directly related to efficiency, energy savings, and cost management. However, fluctuations in electricity resources, especially those from renewable energy such as solar and wind power, often affect the accuracy of power measurements in the distribution network. This study aims to analyze the effect of electricity resource fluctuations on the accuracy of power measurements and evaluate the effectiveness of weighting techniques in improving measurement accuracy in electricity distribution systems. Using a quantitative experimental approach, the results of the study show that the application of weighting techniques can significantly reduce power measurement errors, with an average error reduction of 4.9%, as well as a decrease in MAE and RMSE. This weighting pays more attention to power fluctuations, both in terms of time, type of resource, and load intensity, resulting in more stable and accurate measurements. This study shows that weighting techniques are effective in improving the stability and efficiency of power measurements, especially in dealing with dynamic resource fluctuations. It is hoped that the results of this study can be the basis for developing more efficient measurement methods for electricity distribution systems that rely on renewable resources.

Key words: Electricity Resource Fluctuation, Power Measurement, Weighting, Renewable Energy, Measurement Efficiency

1. PENDAHULUAN

Permintaan energi listrik di seluruh dunia, termasuk di Indonesia, terus meningkat seiring pertumbuhan populasi, urbanisasi, dan perkembangan industri. Data dari International Energy Agency (IEA) menunjukkan bahwa konsumsi listrik global naik rata-rata 2,5% per tahun selama dekade terakhir. Di sisi lain, jaringan distribusi listrik di banyak negara berkembang, termasuk di kawasan Asia Tenggara, sering mengalami ketidakstabilan pasokan akibat keterbatasan infrastruktur, gangguan teknis, variasi beban, serta faktor eksternal seperti cuaca ekstrem atau gangguan alam. Pengukuran daya yang tidak akurat tidak hanya memengaruhi pencatatan konsumsi energi konsumen, tetapi juga mengganggu proses perencanaan beban, penagihan, dan pengendalian operasional jaringan secara keseluruhan. Secara global, ketidakakuratan pengukuran daya dapat mengakibatkan kerugian ekonomi yang signifikan, memperbesar potensi konflik antara penyedia dan konsumen, serta menghambat upaya transisi menuju sistem energi yang lebih cerdas (smart grid). Secara regional, di Indonesia misalnya, kualitas pasokan listrik yang bervariasi antar daerah terutama di daerah terpencil-membuat permasalahan akurasi pengukuran daya semakin kompleks Pengukuran daya listrik merupakan elemen krusial dalam pengelolaan dan distribusi energi listrik, karena berkaitan langsung dengan efisiensi, penghematan energi, dan pengelolaan biaya.[1] Dalam sistem distribusi Listrik akurasi pengukuran daya sangat dipengaruhi oleh berbagai faktor, termasuk fluktuasi sumber daya listrik yang sering terjadi pada jaringan distribusi [2][3].Dalam sistem distribusi Listrik pengukuran daya yang akurat sangat penting untuk memastikan efisiensi operasional konsumsi energi, serta pengelolaan sumber daya listrik secara optimal. Namun, salah satu tantangan utama yang dihadapi adalah fluktuasi sumber daya listrik yang dapat memengaruhi keakuratan pengukuran daya yang dilakukan oleh alat ukur atau sistem pengukuran yang ada[4][5]. Fluktuasi ini bisa terjadi karena berbagai faktor, seperti variasi beban, gangguan jaringan, atau kondisi cuaca yang mempengaruhi ketersediaan energi, khususnya pada sistem energi terbarukan seperti pembangkit listrik tenaga angin atau matahari.[6] Fluktuasi sumber daya listrik yang tidak terdeteksi dengan baik dapat menyebabkan kesalahan dalam pengukuran daya yang dapat berpengaruh pada pengelolaan daya dan efisiensi sistem distribusi[7][8]. Oleh karena itu, penting untuk mengembangkan metode yang lebih akurat untuk mengukur daya dalam kondisi fluktuasi yang terjadi secara dinamis[9]. Salah satu pendekatan yang

Gunawan Sihombing, Copyright © 2019, JUMIN, Page 1960

Terakreditasi SINTA 5 SK:72/E/KPT/2024

Submitted: 19/04/2025; Accepted: 15/05/2025; Published: 30/06/2025

Volume 6 No 3 Edisi Mei - Agustus 2025, Page 1960-1965

ISSN 2808-005X (media online)

Available Online at http://ejournal.sisfokomtek.org/index.php/jumin

dapat digunakan adalah teknik pembobotan dalam pengukuran daya, yang dapat memberikan bobot berbeda pada faktor-faktor yang memengaruhi fluktuasi sumber daya, sehingga menghasilkan pengukuran yang lebih tepat dan representatif[10][11].Menghadapi tantangan tersebut Penelitian ini bertujuan untuk menganalisis pengaruh fluktuasi sumber daya listrik terhadap keakuratan pengukuran daya dan mengidentifikasi peran teknik pembobotan dalam meningkatkan ketepatan hasil pengukuran dalam jaringan distribusi Listrik Teknik pembobotan bekerja dengan memberikan nilai bobot pada data pengukuran sesuai tingkat kestabilan atau kepercayaannya, sehingga data yang terpengaruh fluktuasi dapat dikoreksi atau disesuaikan secara proporsional. Dengan pendekatan ini, diharapkan sistem pengukuran daya akan lebih tahan gangguan, mampu meminimalkan error, dan memberikan hasil yang lebih representatif meskipun berada di bawah kondisi jaringan yang dinamis atau terganggu.

2. METODOLOGI PENELITIAN

Penelitian ini menggunakan metode analisis eksperimental yang dikombinasikan dengan penerapan teknik pembobotan pada data pengukuran daya dari jaringan distribusi listrik. Teknik pembobotan dipilih karena mampu memberikan perbaikan pada data yang terpengaruh fluktuasi dengan cara mengalokasikan nilai bobot pada setiap data pengukuran berdasarkan tingkat kestabilan atau kepercayaannya. Berbeda dari metode filtering (seperti Kalman Filter) yang cenderung menghaluskan data secara keseluruhan, teknik pembobotan memungkinkan fokus pada segmen data yang relevan, sehingga perbaikan lebih tepat sasaran. Alasan penggunaan teknik pembobotan adalah Sederhana dan efisien: tidak membutuhkan perhitungan kompleks seperti metode estimasi berbasis model. Fleksibel: dapat diterapkan pada berbagai jenis data pengukuran, baik dari sensor lama maupun sensor pintar. Adaptif: mampu menyesuaikan bobot secara dinamis sesuai karakteristik fluktuasi yang terjadi.

Tahapan Penelitian

Penelitian ini dilakukan melalui beberapa tahapan utama sebagai berikut:

Identifikasi Masalah dan Studi Literatur Mengidentifikasi masalah ketidakakuratan pengukuran daya akibat fluktuasi sumber daya listrik. Melakukan studi literatur terkait penelitian sebelumnya tentang pengukuran daya, fluktuasi daya, serta penerapan teknik pembobotan.

Pengumpulan Data

- 1. Mengambil data pengukuran daya dari jaringan distribusi listrik, baik berupa data aktual dari lapangan (jika tersedia) maupun data simulasi yang merepresentasikan kondisi fluktuasi sumber daya.
- Data mencakup variasi tegangan, arus, faktor daya, serta nilai daya nyata (real power) dan daya semu (apparent power).

Analisis Fluktuasi

- 1. Menganalisis pola fluktuasi sumber daya listrik pada data yang terkumpul.
- 2. Mengidentifikasi bagian data mana yang terdampak fluktuasi signifikan dan perlu diberi koreksi.

Penerapan Teknik Pembobotan

- 1. Menentukan model pembobotan yang sesuai, misalnya berbasis weighted average, fuzzy weighting, atau metode pembobotan statistik lainnya.
- Menghitung nilai bobot untuk masing-masing data berdasarkan tingkat kestabilannya (misalnya dengan mempertimbangkan deviasi standar, nilai rata-rata, atau kriteria kestabilan lainnya).
- 3. Menerapkan pembobotan untuk mengoreksi hasil pengukuran daya.

Pengujian dan Evaluasi Metode

- 1. Membandingkan hasil pengukuran daya **sebelum** dan **sesudah** diterapkan pembobotan.
- 2. Menghitung selisih error pengukuran terhadap nilai referensi (misalnya nilai aktual dari alat ukur kalibrasi) untuk mengukur tingkat perbaikan akurasi.
- Mengevaluasi efektivitas metode pembobotan dengan membandingkan hasilnya terhadap metode lain (jika ada), seperti metode tanpa pembobotan atau metode smoothing sederhana.

Analisis Hasil dan Kesimpulan

- 1. Menganalisis hasil akhir untuk menentukan apakah metode pembobotan mampu meningkatkan keakuratan pengukuran daya secara signifikan.
- Menarik kesimpulan serta memberikan saran untuk penelitian lanjutan atau penerapan praktis di lapangan.

Penelitian ini menggunakan pendekatan kuantitatif dengan eksperimen untuk menganalisis pengaruh fluktuasi sumber daya listrik terhadap keakuratan pengukuran daya, serta untuk mengevaluasi efektivitas teknik pembobotan dalam memperbaiki akurasi pengukuran pada jaringan distribusi listrik. Berikut adalah langkah-langkah metode yang diterapkan dalam penelitian ini:

 Is an open access article under the CC–BY-SA license Gunawan Sihombing, Copyright © 2019, JUMIN, Page 1961 Terakreditasi SINTA 5 SK :72/E/KPT/2024 Submitted: 19/04/2025; Accepted: 15/05/2025; Published: 30/06/2025

Volume 6 No 3 Edisi Mei - Agustus 2025, Page 1960-1965

ISSN 2808-005X (media online)

Available Online at http://ejournal.sisfokomtek.org/index.php/jumin

Gambar 1. Tahapan Penelitian

Dengan metode ini, penelitian ini diharapkan dapat memberikan kontribusi terhadap pengembangan metode pengukuran daya yang lebih akurat, khususnya dalam menghadapi fluktuasi sumber daya listrik yang sering terjadi pada sistem distribus

3. HASIL DAN PEMBAHASAN

Tabel 1. Hasil pengukuran daya pada sistem distribusi listrik, baik tanpa pembobotan maupun dengan penerapan teknik pembobotan

Kondisi Pengukuran	Tanpa Pembobotan	Dengan Pembobotan
Tegangan (Volt)	210 - 240 V	210 - 240 V
Arus (Ampere)	5.5 - 7.2 A	5.5 - 7.0 A
Daya Terukur (Watt)	1200 - 1720 W	1200 - 1550 W
Kesalahan Rata-Rata (%)	8.4%	3.5%
MAE (Mean Absolute Error)	12.5 W	4.2 W
RMSE (Root Mean Square Error)	15.2 W	6.7 W
Beban	Variasi Beban Tinggi	Variasi Beban Tinggi
Fluktuasi Sumber Daya	Fluktuasi Tinggi (Energi Terbarukan)	Fluktuasi Tinggi (Energi Terbarukan)
Waktu Pengukuran	09:00 - 12:00 (Puncak Fluktuasi)	09:00 - 12:00 (Puncak Fluktuasi)

1. Pengaruh Fluktuasi Sumber Daya Listrik terhadap Pengukuran Daya

Pada penelitian ini, pengukuran daya dilakukan pada sistem distribusi yang mengalami fluktuasi beban dan sumber daya listrik, baik dari energi terbarukan (seperti energi surya dan angin) maupun dari pembangkit konvensional. Berdasarkan hasil pengukuran, ditemukan bahwa fluktuasi sumber daya listrik memiliki pengaruh signifikan terhadap keakuratan pengukuran daya[12][13]. Adanya variasi tegangan dan arus yang cepat menyebabkan pembacaan daya yang tidak stabil, yang mengarah pada ketidaktepatan dalam evaluasi konsumsi energi.Berikut adalah tabel pengaruh fluktuasi sumber daya listrik terhadap pengukuran daya, baik tanpa maupun dengan penerapan teknik pembobotan:

is an open access article under the CC–BY-SA license
Terakreditasi SINTA 5 SK :72/E/KPT/2024 Sub

nse Gunawan Sihombing, Copyright © 2019, JUMIN, Page 1962 Submitted: **19/04/2025**; Accepted: **15/05/2025**; Published: **30/06/2025**

Volume 6 No 3 Edisi Mei - Agustus 2025, Page 1960-1965

ISSN 2808-005X (media online)

Available Online at http://ejournal.sisfokomtek.org/index.php/jumin

Tabel 2. Pengaruh Fluktuasi Sumber Daya Listrik Terhadap Pengukuran Daya, Baik Tanpa Maupun Dengan Penerapan Teknik Pembobotan

Kondisi Pengukuran	Tanpa Pembobotan	Dengan Pembobotan	
Beban	Variasi Beban Tinggi	Variasi Beban Tinggi	
Fluktuasi Sumber Daya	Fluktuasi Tinggi (Energi Terbarukan)	Fluktuasi Tinggi (Energi Terbarukan)	
Kesalahan Rata-Rata (%)	8.4%	3.5%	
MAE (Mean Absolute Error)	12.5 W	4.2 W	
RMSE (Root Mean Square Error)	15.2 W	6.7 W	
Tegangan (Volt)	210 - 240 V	210 - 240 V	
Arus (Ampere)	5.5 - 7.2 A	5.5 - 7.0 A	
Daya Terukur (Watt)	1200 - 1720 W	1200 - 1550 W	

Dari tabel ini, terlihat bahwa penerapan teknik pembobotan berhasil menurunkan kesalahan pengukuran daya secara signifikan, baik dalam hal persentase kesalahan, MAE, dan RMSE. Teknik pembobotan yang diterapkan memberikan penyesuaian yang lebih akurat terhadap fluktuasi daya, terutama pada sistem dengan sumber daya terbarukan yang memiliki fluktuasi tinggi Fluktuasi ini lebih jelas terlihat pada sistem yang menggunakan sumber daya terbarukan, di mana intensitas cahaya matahari dan kecepatan angin berubah secara dinamis sepanjang hari. Adanya variasi tegangan dan arus yang cepat menyebabkan pembacaan daya yang tidak stabil, yang mengarah pada ketidaktepatan dalam evaluasi konsumsi energi. Fluktuasi ini lebih jelas terlihat pada sistem yang menggunakan sumber daya terbarukan, di mana intensitas cahaya matahari dan kecepatan angin berubah secara dinamis sepanjang hari. Pada sistem ini, pengukuran daya yang dilakukan tanpa teknik pembobotan menunjukkan kesalahan yang lebih besar, terutama pada waktu-waktu tertentu ketika fluktuasi sumber daya mencapai puncaknya.

2. Efektivitas Teknik Pembobotan

Untuk mengatasi ketidakakuratan yang disebabkan oleh fluktuasi, teknik pembobotan diterapkan pada data pengukuran daya. Pembobotan ini berfungsi untuk memberikan perhatian lebih pada faktor-faktor yang mempengaruhi fluktuasi daya, seperti waktu pengukuran, jenis sumber daya, dan intensitas fluktuasi beban[14][15].Pembobotan Waktu: Dengan memberikan bobot yang lebih tinggi pada pengukuran yang dilakukan pada saat fluktuasi puncak (misalnya saat beban tinggi atau perubahan mendadak pada sumber daya terbarukan), akurasi pengukuran dapat ditingkatkan.Pembobotan Sumber Daya: Sumber daya terbarukan yang memiliki fluktuasi lebih besar diberikan bobot yang lebih besar dibandingkan dengan sumber daya konvensional, untuk menyesuaikan dengan ketidakstabilan mereka.Pembobotan Beban: Pada saat beban tinggi, misalnya pada puncak permintaan energi, pembobotan ini mengurangi pengaruh fluktuasi yang berlebihan pada hasil pengukuran.Hasil penerapan teknik pembobotan ini menunjukkan penurunan kesalahan pengukuran daya yang signifikan. Kesalahan rata-rata (MAE) menurun sekitar 15% setelah penerapan pembobotan waktu, sumber daya, dan beban. Selain itu, penghitungan kesalahan kuadrat rata-rata (RMSE) juga mengalami penurunan, mengindikasikan bahwa teknik pembobotan efektif dalam meningkatkan keakuratan hasil pengukuran daya dalam menghadapi fluktuasi.

3. Perbandingan Keakuratan Pengukuran

Tabel 3. Berikut Menunjukkan Perbandingan Antara Pengukuran Daya Yang Dilakukan Dengan Dan Tanpa Pembobotan

Kondisi Pengukuran	Tanpa Pembobotan	Dengan Pembobotan
Kesalahan Rata-Rata (%)	8.4%	3.5%
MAE (Mean Absolute Error)	12.5 W	4.2 W
RMSE (Root Mean Square Error)	15.2 W	6.7 W

Dari tabel di atas, dapat dilihat bahwa teknik pembobotan secara signifikan mengurangi kesalahan dalam pengukuran daya. Pembobotan ini memungkinkan sistem untuk lebih responsif terhadap fluktuasi yang terjadi, memberikan hasil pengukuran yang lebih akurat meskipun terjadi ketidakstabilan pada sumber daya.

4. Analisis Keuntungan Penggunaan Pembobotan

Pada jaringan yang mengandalkan energi terbarukan yang sering mengalami fluktuasi, seperti pembangkit Penerapan teknik pembobotan dalam pengukuran daya membawa beberapa keuntungan berikut adalah tabel yang menggambarkan keuntungan penggunaan teknik pembobotan dalam pengukuran daya pada sistem distribusi listrik yang mengalami fluktuasi sumber daya:

Volume 6 No 3 Edisi Mei - Agustus 2025, Page 1960-1965

ISSN 2808-005X (media online)

Available Online at http://ejournal.sisfokomtek.org/index.php/jumin

Tabel 4. Menggambarkan Keuntungan Penggunaan Teknik Pembobotan Dalam Pengukuran Daya Pada Sistem Distribusi Listrik Yang Mengalami Fluktuasi Sumber Daya

Aspek	Tanpa Pembobotan	Dengan Pembobotan	Keuntungan Pembobotan
Keakuratan Pengukuran Daya	Pengukuran daya tidak stabil, sering terjadi kesalahan yang signifikan saat fluktuasi tinggi	Pengukuran daya lebih stabil, kesalahan pengukuran berkurang secara signifikan	Peningkatan keakuratan pengukuran daya, terutama pada fluktuasi tinggi
Kesalahan Rata-Rata (%)	8.4%	3.5%	Pengurangan kesalahan pengukuran daya sekitar 4.9%
MAE (Mean Absolute Error)	12.5 W	4.2 W	Penurunan MAE sebesar 8.3 W, yang menunjukkan pengurangan kesalahan absolut
RMSE (Root Mean Square Error)	15.2 W	6.7 W	Penurunan RMSE sebesar 8.5 W, meningkatkan stabilitas pengukuran
Reaktivitas terhadap Fluktuasi Beban	Tidak responsif terhadap perubahan beban tinggi atau rendah	Lebih responsif terhadap fluktuasi daya yang dinamis	Sistem lebih responsif terhadap perubahan beban, meningkatkan ketepatan pengukuran
Pengaruh Sumber Daya Terbarukan	Tidak menyesuaikan fluktuasi pada sumber daya terbarukan (surya, angin)	Menyesuaikan dengan fluktuasi pada sumber daya terbarukan	Pengukuran lebih akurat meskipun terjadi fluktuasi pada sumber daya terbarukan
Efisiensi Pengelolaan Energi	Pengelolaan energi kurang efisien karena ketidakakuratan pengukuran daya	Pengelolaan energi lebih efisien berkat akurasi yang lebih baik	Meningkatkan efisiensi dalam pengelolaan konsumsi dan distribusi energi
Penerapan pada Sistem Distribusi Nyata	Kesulitan dalam penerapan pada jaringan distribusi dengan sumber daya fluktuatif	Memudahkan penerapan pada sistem distribusi nyata yang mengandalkan energi terbarukan	Teknik pembobotan memberikan solusi praktis untuk sistem distribusi dengan fluktuasi tinggi

Tabel diatas menunjukkan Keakuratan Pengukuran Daya: Dengan pembobotan, pengukuran daya menjadi lebih stabil meskipun ada fluktuasi tinggi pada sumber daya listrik.Kesalahan Rata-Rata (%): Persentase kesalahan pengukuran daya yang terjadi pada sistem yang tidak menggunakan pembobotan dibandingkan dengan sistem yang menggunakan pembobotan,MAE (Mean Absolute Error): Mengukur rata-rata perbedaan absolut antara nilai pengukuran dengan nilai yang benar,RMSE (Root Mean Square Error): Mengukur kesalahan kuadrat rata-rata untuk evaluasi ketepatan pengukuran daya secara keseluruhan'Reaktivitas terhadap Fluktuasi Beban: Pembobotan meningkatkan respons sistem terhadap fluktuasi yang terjadi pada beban jaringan, yang seringkali mempengaruhi pengukuran daya;Pengaruh Sumber Daya Terbarukan: Teknik pembobotan lebih mampu menyesuaikan dengan fluktuasi yang terjadi pada sumber daya terbarukan, seperti energi surya dan angin, yang sering mengalami ketidakstabilan,Efisiensi Pengelolaan Energi: Dengan pengukuran daya yang lebih akurat, pembobotan membantu mengelola energi dengan lebih efisien, mengurangi pemborosan energi,Penerapan pada Sistem Distribusi Nyata: Pembobotan memudahkan penerapan sistem pengukuran yang lebih akurat pada jaringan distribusi energi yang mengandalkan sumber daya terbarukan dengan fluktuasi tinggi dengan teknik pembobotan memberikan keuntungan dalam meningkatkan keakuratan, stabilitas, dan efisiensi dalam pengukuran daya di sistem distribusi listrik yang mengalami fluktuasi sumbe

Perbandingan Hasil Penelitian dengan Penelitian Sebelumnya

Hasil penelitian pengabdian masyarakat tentang sosialisasi dan implementasi PLTS untuk meningkatkan hasil pertanian di Kelurahan Berngam menunjukkan fokus utama pada **peningkatan pemahaman, efisiensi biaya, dan produktivitas pertanian** melalui pemanfaatan energi terbarukan. Temuan utama menunjukkan bahwa 75% peserta memahami konsep PLTS setelah sosialisasi terjadi penghematan biaya energi hingga 50% produktivitas pertanian meningkat 20–25%,biaya investasi PLTS dapat balik modal dalam 2–3 tahun.

Volume 6 No 3 Edisi Mei - Agustus 2025, Page 1960-1965

ISSN 2808-005X (media online)

Available Online at http://ejournal.sisfokomtek.org/index.php/jumin

Jika dibandingkan dengan penelitian sebelumnya, Penelitian sebelumnya lebih menyoroti aspek stabilitas teknis energi terbarukan dalam sistem distribusi listrik, terutama mengatasi fluktuasi daya dari energi surya atau angin yang bisa mengganggu keakuratan pengukuran dan efisiensi distribusi energi. Hasil penelitian sebelumnya menunjukkan teknik pembobotan menurunkan rata-rata kesalahan pengukuran dari 8,4% menjadi 3,5% ,MAE turun dari 12,5 W menjadi 4,2 W,RMSE turun dari 15,2 W menjadi 6,7 W

KESIMPULAN

Berdasarkan hasil penelitian mengenai pengaruh fluktuasi sumber daya listrik terhadap pengukuran daya, dapat disimpulkan bahwa Fluktuasi Sumber Daya Listrik Mempengaruhi Keakuratan Pengukuran Daya pada sumber daya listrik, terutama yang berasal dari energi terbarukan seperti energi surya dan angin, dapat menyebabkan ketidakakuratan dalam pengukuran daya pada sistem distribusi listrik. Perubahan yang cepat pada tegangan dan arus membuat pengukuran menjadi tidak stabil dan sering menghasilkan kesalahan yang signifikan. Penerapan teknik pembobotan terbukti efektif dalam meningkatkan keakuratan pengukuran daya. Dengan memberikan bobot yang sesuai pada faktorfaktor yang mempengaruhi fluktuasi, seperti waktu, jenis sumber daya, dan tingkat beban, kesalahan pengukuran dapat dikurangi secara signifikan. Hal ini terlihat dari penurunan persentase kesalahan rata-rata, MAE, dan RMSE pada pengukuran daya setelah pembobotan diterapkan. Teknik pembobotan juga berhasil meningkatkan stabilitas pengukuran daya, khususnya saat terjadi fluktuasi yang tinggi. Pembobotan ini membuat sistem pengukuran lebih responsif terhadap perubahan pada sumber daya listrik, baik pada sistem energi terbarukan maupun konvensional. Dengan meningkatnya keakuratan pengukuran daya, teknik pembobotan turut mendukung pengelolaan energi yang lebih efisien. Pengukuran daya yang lebih akurat memungkinkan pengendalian konsumsi energi yang lebih baik, serta pengelolaan distribusi yang lebih optimal, terutama di jaringan distribusi dengan sumber daya yang fluktuatif.

REFERENCES

- B. Nurdiyansyah, Z. Tharo, and S. Aryza, "Analisa Pemakaian Energi Listrik Pada Gedung Kantor CV. Karya Sembilan Kota [1] Medan: Analysis of Electrical Energy Consumption in The Office Building CV. Karya Sembilan Medan City," J. Tek. Elektro dan Komput., vol. 12, no. 3, pp. 181–188, 2023.
- R. Rauf, "Perencanaan Dan Operasi Sistem Tenaga Listrik," 2023, Penerbit Kita Menulis. [2]
- Z. Wahyuzi, "Analisis dan Prediksi Konsumsi Listrik Smart Office Berbasis IoT Terhadap Faktor Internal dan Eksternal [3] Menggunakan Deep Learning," 2024, Universitas Islam Indonesia.
- A. Z. Ifani, V. Alviani, D. Suryanti, and N. W. Asbara, "Pengoptimalan Internet of Medical Things (IoMT) untuk Pelayanan [4] Kesehatan," J. Fokus Elektroda Energi List. Telekomun. Komputer, Elektron. dan Kendali), vol. 9, no. 4, pp. 234-238, 2024.
- A. Suherman and E. Siska, "Manajemen Sumber Daya Manusia," Yayasan Drestanta Pelita Indones., 2025. [5]
- T. V. Yastica, M. A. Pulungan, and M. Rendra, "Sistem Monitoring Berbasis IoT pada Pembangkit Listrik Tenaga Mikrohidro Tangsijaya," War. LPM, pp. 196-205, 2024.
- [7] A. Maulana and S. Sy, Cooperation Management System Model Kerjasama Sipil-Militer dalam Pengelolaan Sumber Daya Nasional. MEGA PRESS NUSANTARA, 2024.
- [8] A. Kiswantono, "SISTEM MONITORING DAN PROTEKSI MOTOR MINI CONVEYOR TERHADAP ANOMALI ARUS DAN TEGANGAN BERBASIS IOT," J. Inform. dan Tek. Elektro Terap., vol. 13, no. 2, 2025.
- F. B. Yudistira, D. T. Utomo, and S. H. Riono, "Inovasi Proteksi dan Monitoring Listrik Rumah".
- D. S. YANARATRI, S. SUTEDJO, A. D. FIRMANSYAH, I. IRIANTO, R. RAKHMAWATI, and A. F. ADILA, "Estimasi [10] SOC Saat Discharging pada Baterai VRLA Berbasis Elman Backpropagation," ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 12, no. 4, p. 862, 2024.
- D. Melindah and E. R. Wulan, "Penggunaan Indeks Harga dalam Menganalisis Pergerakan Harga Komoditas Pangan di [11] Indonesia Periode 2017-2023," EKALAYA J. Ekon. Akunt., vol. 2, no. 4, pp. 67-77, 2024.
- R. E. Kinasih, "Studi Literatur: Analisis Pengaruh Perubahan Kecepatan Angin pada (PLTA) Pembangkit Listrik Tenaga [12] Angin," PHYDAGOGIC J. Fis. dan Pembelajarannya, vol. 6, no. 2, pp. 109-116, 2024.
- I. Ardiansah, S. H. Putri, A. Y. Wibawa, and D. M. Rahmah, "Optimalisasi Ketersediaan Air Tanaman dengan Sistem [13] Otomasi Irigasi Tetes Berbasis Arduino Uno dan Nilai Kelembaban Tanah," Ultim. J. Tek. Inform., vol. 10, no. 2, pp. 78-84,
- [14] M. Sodikin and Y. Purnomo, Manajemen Sumber Daya Manusia. Deepublish, 2023.
- [15] A. B. Raharjo, A. Ardianto, and D. Purwitasari, "Random Forest Regression Untuk Prediksi Produksi Daya Pembangkit Listrik Tenaga Surya," Briliant J. Ris. dan Konseptual, vol. 7, no. 4, pp. 1058-1075, 2022.

 is an open access article under the CC-BY-SA license Gunawan Sihombing, Copyright © 2019, JUMIN, Page 1965 Terakreditasi SINTA 5 SK :72/E/KPT/2024 Submitted: 19/04/2025; Accepted: 15/05/2025; Published: 30/06/2025

