Analisis Segmentasi Pelanggan Ritel Online Menggunakan K-Means Clustering Berdasarkan Model Recency, Frequency, Monetary (RFM)
Keywords:
Customer Segmentation, RFM (Recency, Frequency, Monetary) Model, Customer Profile, K-Means ClusteringAbstract
Downloads
References
Abadi, S., et al. "Application model of k-means clustering: Insights into promotion strategy of vocational high school." International Journal of Engineering & Technology, vol. 7, no. 2.27 Special Issue, 2018, pp. 182–187. doi: 10.14419/ijet.v7i2.11491.
Chaudhary, P. "Data Mining System, Functionalities and Applications: A Radical Review." International Journal of Distributed and Parallel Systems, vol. 1, no. 1, 2015, pp. 32–44.
Harani, N. H., Prianto, C., and Nugraha, F. A. "Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python." Jurnal Manajemen Informatika, vol. 10, no. 2, 2020, pp. 133–146. doi: 10.34010/jamika.v10i2.2683.
Puspitasari, N., Widians, J. A., and Setiawan, N. B. "Customer segmentation using bisecting k-means algorithm based on recency, frequency, and monetary (RFM) model." Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, 2020, pp. 78–83. doi: 10.14710/jtsiskom.8.2.2020.78-83.
Siagian, R., Sirait, P. S. P., and Halima, A. "E-Commerce Customer Segmentation Using K-Means Algorithm and Length, Recency, Frequency, Monetary Model." Journal of Informatics Telecommunication Engineering, vol. 5, no. 1, 2021, pp. 21–30. doi: 10.31289/jite.v5i1.5182.
R. D. Hastuti, I. Waspada, P. W. Wirawan, and N. Bahtiar, “Designing computer-assisted problem-based learning (CAPBL) environment for performance analysis of isolation forest algorithm,” J. Phys. Conf. Ser., vol. 1524, no. 1, 2020, doi: 10.1088/1742-6596/1524/1/012103.
H. Ge and L. Jin, “Human Posture Recognition Based on Isolation Forest Algorithm,” Adv. Transdiscipl. Eng., vol. 37, pp. 276–284, 2023, doi: 10.3233/ATDE230149.
G. ASLANTAŞ, M. GENÇGÜL, M. RUMELLİ, M. ÖZSARAÇ, and G. BAKIRLI, “Customer Segmentation Using K-Means Clustering Algorithm and RFM Model,” Deu Muhendis. Fak. Fen ve Muhendis., vol. 25, no. 74, pp. 491–503, 2023, doi: 10.21205/deufmd.2023257418.
Muningsih, E., & Kiswati, S. (2018). Sistem aplikasi berbasis optimasi metode elbow untuk penentuan clustering pelanggan. Joutica, 3(1), 117.
Aminazadeh, M., & Noorbehbahani, F. (2022). City intersection clustering and analysis based on traffic time series. In 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 274-281). IEEE. https://doi.org/10.1109/ICCKE57176.2022.9960065
Liu, F., & Deng, Y. (2020). Determine the number of unknown targets in open world based on elbow method. IEEE Transactions on Fuzzy Systems, 29(5), 986-995.
A. Z. Faridee and V. P. Janeja, “Measuring Peer Mentoring Effectiven,” Am. J. o, vol. 15, no. 2, pp. 7–22, 2020.
N. H. Harani, C. Prianto, and F. A. Nugraha, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,” J. Manaj. Inform., vol. 10, no. 2, pp. 133–146, 2020, doi: 10.34010/jamika.v10i2.2683.
Pradana, M. G., & Ha, H. T. (2021). Maximizing Strategy Improvement in Mall Customer Segmentation using K-means Clustering. Journal of Applied Data Sciences, 2(1), 19–25. https://doi.org/10.47738/jads.v2i1.18
R. Siagian, P. S. Pahala Sirait, and A. Halima, “E-Commerce Customer Segmentation Using K-Means Algorithm and Length, Recency, Frequency, Monetary Model,” J. Informatics Telecommun. Eng., vol. 5, no. 1, pp. 21–30, 2021, doi: 10.31289/jite.v5i1.5182.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Adzriel Yusak Noah Rumapea, Dian Pratiwi, Syandra Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Freddy Andrew Ryandi, Dian Pratiwi, Syandra Sari, Analisis Sentimen Masyarakat Di Media Sosial X Terhadap Kemenkes Dengan Naive Bayes dan SVM , Jurnal Sains dan Teknologi: Vol. 7 No. 1 (2025): Jurnal Sains dan Teknologi