Pemanfaatan Scrap Besi untuk Reduksi Krom Heksavalen Limbah Cair Industri Pelapisan Logam

Authors

  • Sunardi Sunardi, Universitas Setia Budi,  Indonesia
  • Argoto Mahayana, Universitas Setia Budi,  Indonesia
  • Sumardiyono Sumardiyono, Universitas Setia Budi,  Indonesia
  • Lucia Sincu Gunawan, Universitas Setia Budi,  Indonesia
  • Nur Hidayati, Universitas Setia Budi,  Indonesia
  • Soebiyanto Soebiyanto, Universitas Setia Budi,  Indonesia
  • Mahardira Dewantara, Universitas Muhammadiyah PKU Surakarta,  Indonesia
  • Afif Afghohani, Universitas Veteran Bangun Nusantara Sukoharjo,  Indonesia

DOI:

https://doi.org/10.55338/jpkmn.v6i3.6600

Keywords:

Scrap besi, Kromium heksavalen, Reduksi, Limbah cair, Industri pelapisan logam

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan untuk menerapkan hasil penelitian pemanfaatan limbah scrap besi sebagai agen pereduksi kromium heksavalen (Cr(VI)) dalam limbah cair industri pelapisan logam skala kecil. Lokasi kegiatan berada di industri pelapisan logam Gemilang Chrome, Jl. Raya Palur Km. 7,5 Solo, yang belum memiliki sistem pengolahan limbah cair berbahaya secara memadai. Metode yang digunakan meliputi survei lapangan, wawancara dengan pemilik dan operator industri, pengambilan dan analisis sampel limbah, pelatihan teknologi tepat guna, serta implementasi langsung teknologi reduksi Cr(VI) menggunakan scrap besi dalam skala sederhana. Hasil kegiatan menunjukkan bahwa scrap besi mampu mereduksi kadar Cr(VI) hingga 87,5% dalam kondisi optimum pH 3 dan waktu kontak 90 menit. Selain efisiensi teknis, terjadi peningkatan pengetahuan dan keterampilan mitra dalam pengelolaan limbah berbahaya secara mandiri dan murah. Temuan ini menunjukkan bahwa scrap besi tidak hanya berfungsi sebagai agen remediasi yang efektif, tetapi juga sebagai solusi aplikatif berbasis prinsip ekonomi sirkular yang relevan untuk diterapkan pada industri pelapisan logam berskala UMKM. Kegiatan ini sekaligus membuktikan bahwa hasil riset laboratorium dapat diadaptasikan dalam konteks pengabdian masyarakat yang nyata, berkelanjutan, dan berdaya guna.

Downloads

Download data is not yet available.

References

B.K, V., Bagchi, S., & T.R, S. (2025). Chromium Detection in Water Using Optical Methods: A Study of Reagent and Reagentless Approaches. Critical Reviews in Analytical Chemistry. https://doi.org/10.1080/10408347.2024.2419896;REQUESTEDJOURNAL:JOURNAL:BATC20;WGROUP:STRING:PUBLICATION

Das, P., Mondal, G. C., Singh, S., Singh, A. K., Prasad, B., & Singh, K. K. (2018). Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review. Water Environment Research, 90(5), 395–408. https://doi.org/10.2175/106143017X15131012152951

Dikobe, J., Melato, F. A., Adlem, C. J. L., & Netshiongolwe, K. (2024). Determination of chromium species in water using diphenylcarbazide with a sequential spectrophotometric discrete robotic analyser. Heliyon, 10(14), 2405–8440. https://doi.org/10.1016/j.heliyon.2024.e34670

Engstler, R., Reipert, J., Karimi, S., Vukušić, J. L., Heinzler, F., Davies, P., Ulbricht, M., & Barbe, S. (2022). A Reverse Osmosis Process to Recover and Recycle Trivalent Chromium from Electroplating Wastewater. Membranes 2022, Vol. 12, Page 853, 12(9), 853. https://doi.org/10.3390/MEMBRANES12090853

Fang, Y., Ni, X., Xiao, Q., Huang, S., & López-Valdivieso, A. (2024). Iron-Based Materials Synthesized by Mechanical Ball Milling for Environmental Contaminants Removal: Progress and Prospects. International Journal of Environmental Research 2024 19:1, 19(1), 1–24. https://doi.org/10.1007/S41742-024-00671-W

Fu, F., Han, W., Cheng, Z., & Tang, B. (2016). Removal of hexavalent chromium from wastewater by acid-washed zero-valent aluminum. Desalination and Water Treatment, 57(12), 5592–5600. https://doi.org/10.1080/19443994.2015.1006259

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/J.JENVMAN.2010.11.011

Georgaki, M. N., & Charalambous, M. (2023). Toxic chromium in water and the effects on the human body: a systematic review. Journal of Water and Health, 21(2), 205–223. https://doi.org/10.2166/WH.2022.214

Georgaki, M. N., Charalambous, M., Kazakis, N., Talias, M. A., Georgakis, C., Papamitsou, T., & Mytiglaki, C. (2023). Chromium in Water and Carcinogenic Human Health Risk. Environments 2023, Vol. 10, Page 33, 10(2), 33. https://doi.org/10.3390/ENVIRONMENTS10020033

Guo, Y., Li, H. Y., Cheng, J., Shen, S., Diao, J., & Xie, B. (2021). Highly efficient separation and recovery of Si, V, and Cr from V-Cr-bearing reducing slag. Separation and Purification Technology, 263, 118396. https://doi.org/10.1016/J.SEPPUR.2021.118396

Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci., 342(1), 135–141. https://doi.org/10.1016/j.jcis.2009.09.065

Hamadeen, H. M., Elkhatib, E. A., & Moharem, M. L. (2022). Optimization and mechanisms of rapid adsorptive removal of chromium (VI) from wastewater using industrial waste derived nanoparticles. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/S41598-022-18494-0;SUBJMETA=169,172,638,639,704,896;KWRD=ENVIRONMENTAL+CHEMISTRY,POLLUTION+REMEDIATION

Husain, A., Ayub, S., Khan, A. H., Alam, S. S., & Hasan, M. A. (2025). Pilot scale recovery, and removal of chromium from tannery wastewater by chemical precipitation: Life cycle assessment and cost analysis. Journal of Environmental Management, 391, 126502. https://doi.org/10.1016/J.JENVMAN.2025.126502

Itankar, N., & Patil, Y. (2022). Assessing Physicochemical Technologies for Removing Hexavalent Chromium from Contaminated Waters—an Overview and Future Research Directions. Water, Air, & Soil Pollution 2022 233:9, 233(9), 1–21. https://doi.org/10.1007/S11270-022-05745-Z

Karimi, S., Engstler, R., Hosseinipour, E., Wagner, M., Heinzler, F., Piepenbrink, M., Barbe, S., & Davies, P. A. (2024). High-pressure batch reverse osmosis (RO) for zero liquid discharge (ZLD) in a Cr(III) electroplating process. Desalination, 580, 117479. https://doi.org/10.1016/J.DESAL.2024.117479

Kerur, S. S., Bandekar, S., Hanagadakar, M. S., Nandi, S. S., Ratnamala, G. M., & Hegde, P. G. (2021). Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Materials Today: Proceedings, 42, 1112–1121. https://doi.org/10.1016/J.MATPR.2020.12.492

Kocaoba, S., Cetin, G., & Akcin, G. (2022). Chromium removal from tannery wastewaters with a strong cation exchange resin and species analysis of chromium by MINEQL+. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/S41598-022-14423-3;SUBJMETA=172,4111,638,639,704;KWRD=CHEMISTRY,ENVIRONMENTAL+SCIENCES,NATURAL+HAZARDS

Li, L., Cao, G., & Zhu, R. (2021). Adsorption of Cr(VI) from aqueous solution by a litchi shell-based adsorbent. Environmental Research, 196, 110356. https://doi.org/10.1016/J.ENVRES.2020.110356

Matei, E., Predescu, A. M., Șăulean, A. A., Râpă, M., Sohaciu, M. G., Coman, G., Berbecaru, A. C., Predescu, C., Vâju, D., & Vlad, G. (2022). Ferrous Industrial Wastes—Valuable Resources for Water and Wastewater Decontamination. International Journal of Environmental Research and Public Health 2022, Vol. 19, Page 13951, 19(21), 13951. https://doi.org/10.3390/IJERPH192113951

Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia, I. (2016). Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor : P.68/Menlhk/Setjen/Kum.1/8/2016. Angewandte Chemie International Edition, 6(11), 951–952., 10–27.

Mohanty, S., Benya, A., Hota, S., Kumar, M. S., & Singh, S. (2023). Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies. Environmental Chemistry and Ecotoxicology, 5, 46–54. https://doi.org/10.1016/J.ENCECO.2023.01.002

Namakka, M., Rahman, M. R., Bin Mohamad Said, K. A., & Muhammad, A. (2024). Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Advances, 14(41), 30411–30439. https://doi.org/10.1039/D4RA03507K

Plessl, K., Russ, A., & Vollprecht, D. (2023). Application and development of zero-valent iron (ZVI) for groundwater and wastewater treatment. International Journal of Environmental Science and Technology, 20(6), 6913–6928. https://doi.org/10.1007/S13762-022-04536-7/METRICS

Pradhan, P., & Nambi, I. M. (2025). Sustainable remediation method for hexavalent chromium contaminated site. Process Safety and Environmental Protection, 199, 107268. https://doi.org/10.1016/J.PSEP.2025.107268

Ramli, N. N., Kurniawan, S. B., Ighalo, J. O., Mohd Said, N. S., Marsidi, N., Buhari, J., Ramli Shah, R. A., Zulkifli, M., Alias, J., Daud, N. M., Ahmad, J., Othman, A. R., Sheikh Abdullah, S. R., & Abu Hasan, H. (2023). A review of the treatment technologies for hexavalent chromium contaminated water. BioMetals 2023 36:6, 36(6), 1189–1219. https://doi.org/10.1007/S10534-023-00512-X

Setyawan, F., Dian Indrawati Sawali, F., Azhar Afandy, M., & Mustikaningrum, M. (2024). Cr (VI) Removal from Aqueos Solution by Coagulation-Adsorption Integrated System. J. Chem. Sci, 13(1). http://journal.unnes.ac.id/sju/index.php/ijcs

Sharma, P., Singh, S. P., Parakh, S. K., & Tong, Y. W. (2022). Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered, 13(3), 4923–4938. https://doi.org/10.1080/21655979.2022.2037273

Shi, D., Han, J., Mi, S., Chen, Y., Ma, Y., Li, Y., Zuo, J., & Zhu, G. (2025). Creation of ultra-fine sulfide-modified nano zero-valent iron onto NH2-SiO2 surface for enhanced removal performance of Ni(II). Journal of Environmental Chemical Engineering, 13(3), 116665. https://doi.org/10.1016/J.JECE.2025.116665

Singh, V., Abhishek, K., Nand Rai, S., Singh, S. K., Vamanu, E., & Kumar, A. (2023). Source of Cr(VI) in the aquatic ecosystem, its genotoxic effects and microbial removal from contaminated water. Green Chemistry Letters and Reviews, 16(1). https://doi.org/10.1080/17518253.2023.2267079;WEBSITE:WEBSITE:TFOPB;PAGEGROUP:STRING:PUBLICATION

Staszak, K., Kruszelnicka, I., Ginter-Kramarczyk, D., Góra, W., Baraniak, M., Lota, G., & Regel-Rosocka, M. (2022). Advances in the Removal of Cr(III) from Spent Industrial Effluents—A Review. Materials 2023, Vol. 16, Page 378, 16(1), 378. https://doi.org/10.3390/MA16010378

Sunardi. (2024). Treating Waste with Waste : Utilization of Iron Powder for the Reduction of Chromium (Cr6+) in Metal Plating Industry Liquid Waste. Jurnal Serambi Engineering, 9(3). https://jse.serambimekkah.id/index.php/jse/article/view/301

Thiripelu, P., Manjunathan, J., Revathi, M., & Ramasamy, P. (2024). Removal of hexavalent chromium from electroplating wastewater by ion-exchange in presence of Ni(II) and Zn(II) ions. Journal of Water Process Engineering, 58, 104815. https://doi.org/10.1016/J.JWPE.2024.104815

Tie, J., Li, W., Liu, H., Huang, K., Mi, X., Wei, M., & Hou, L. (2023). Efficient adsorption and reduction of Cr(VI) by a novel polyaniline modified magnetic iron-based waterworks sludge from aqueous solution. Chemical Engineering Journal, 451, 137673. https://doi.org/10.1016/J.CEJ.2022.137673

Wang, D., Li, G., Qin, S., Tao, W., Gong, S., & Wang, J. (2021). Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation. Ecotoxicology and Environmental Safety, 208, 111734. https://doi.org/10.1016/J.ECOENV.2020.111734

Wang, L., Song, C., Jiang, X., Li, T., & Wang, H. (2025). Mechanochemical synthesis of redox-active Fe-based nanocomposites for efficient Cr(VI) remediation in water and soil. Separation and Purification Technology, 377, 134212. https://doi.org/10.1016/J.SEPPUR.2025.134212

Wang, P., Hu, J., Liu, T., Han, G., Ma, W. min, & Li, J. (2023). New insights into ball-milled zero-valent iron composites for pollution remediation: An overview. Journal of Cleaner Production, 385, 135513. https://doi.org/10.1016/J.JCLEPRO.2022.135513

Wei, R., Xia, J., Wang, R., & Long, H. (2025). A novel approach to collaborative treatment of chromium-containing wastewater via a rotary hearth furnace: Direct reduction of hexavalent chromium to metallic chromium. Journal of Water Process Engineering, 71, 107366. https://doi.org/10.1016/J.JWPE.2025.107366

Wu, Q., Sun, Y., Luo, Z., Li, X., Wen, Y., Shi, Y., Wu, X., Huang, X., Zhu, Y., & Huang, C. (2024). Application and development of zero-valent iron (ZVI)-based materials for environmental remediation: A scientometric and visualization analysis. Environmental Research, 241, 117659. https://doi.org/10.1016/J.ENVRES.2023.117659

Xi, Y., Peng, Z., Zhang, Z., Su, Z., Huang, Y., Li, X., & Yuan, X. (2025). Enhanced Cr(VI) removal by nanoscale zerovalent iron through biogenic sulfidation:Comparison against corresponding chemical sulfidation. Cleaner Chemical Engineering, 11, 100184. https://doi.org/10.1016/J.CLCE.2025.100184

Xiong, L., Hu, H., Liu, M., & Li, X. (2025). Fly ash-doped biochar-supported nZVI composite for Cr(VI) removal: Synthesis, performance, and mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 724, 137521. https://doi.org/10.1016/J.COLSURFA.2025.137521

Yang, M., Zhang, X., & Sun, Y. (2024). Remediation of Cr(VI) Polluted Groundwater Using Zero-Valent Iron Composites: Preparation, Modification, Mechanisms, and Environmental Implications. Molecules 2024, Vol. 29, Page 5697, 29(23), 5697. https://doi.org/10.3390/MOLECULES29235697

Zhang, Y. fei, Zhang, C. hui, Xu, J. hui, Li, L., Li, D., Wu, Q., & Ma, L. ming. (2022). Strategies to enhance the reactivity of zero-valent iron for environmental remediation: A review. Journal of Environmental Management, 317, 115381. https://doi.org/10.1016/J.JENVMAN.2022.115381

Zhao, C., Zhang, M., Zhang, Y., Jiang, L., Tao, J., & Wen, J. (2025). Fabrication of iron incorporated engineering architectures with exceptional antioxidant capacity and remarkable stability aerogels for synergistic chemical reduction and adsorptive removal of Cr(VI) from wastewater. Separation and Purification Technology, 373, 133584. https://doi.org/10.1016/J.SEPPUR.2025.133584

Downloads

Published

2025-07-26

How to Cite

Sunardi, S., Mahayana, A. ., Sumardiyono, S., Gunawan, L. S. ., Hidayati, N. ., Soebiyanto, S., Dewantara, M., & Afghohani, A. . (2025). Pemanfaatan Scrap Besi untuk Reduksi Krom Heksavalen Limbah Cair Industri Pelapisan Logam. Jurnal Pengabdian Kepada Masyarakat Nusantara, 6(3), 3715-3722. https://doi.org/10.55338/jpkmn.v6i3.6600

Issue

Section

Pemberdayaan Ekonomi Masyarakat

Most read articles by the same author(s)