Metrik Spektral Terpadu untuk Stabilitas dan Komputasi Eigen Paper

Authors

  • Desi Vinsensia, STMIK Pelita Nusantara,  Indonesia
  • Yulia Utami, STMIK Pelita Nusantara,  Indonesia
  • Joya Rahmawida, STMIK Pelita Nusantara,  Indonesia
  • Chessie Paquita Senjaya, STMIK Pelita Nusantara,  Indonesia

DOI:

https://doi.org/10.55338/jumin.v6i4.6559

Keywords:

Clustering, Eigenvalue, Grassmannian, Metric, Perturbation, Spectral, Stability

Abstract

Penelitian ini mengusulkan  kerangka terpadu untuk analisis stabilitas berbasis metrik spectral yang menggabungkan jarak spectral matriks, jarak spectral graf dan evaluasi stabilitas komunitas melalui clustering, serta jarak antar subruang eigen guna menilai sensitivitas terhadap perturbasi. Tujuan penelitian adalah menurunkan metrik terpadu yang konsisten secara teori (kelengkapan, kompak) dan empiris untuk membandingkan struktur spektral di bawah noise. Metode diuji pada (a) matriks sintetis dengan noise Gaussian aditif multi-level dan (b) graf jaringan jalan realistik (serta rencana penambahan satu dataset graf publik kecil untuk validasi eksternal). Hasil menunjukkan peningkatan kualitas clustering (Adjusted Rand Index/ARI naik dibanding baseline adjacency) dan penurunan rata-rata error estimasi sensitivitas subruang sebesar ketika menggunakan bound geodesik Grassmannian dibanding bound klasik; overhead waktu komputasi hanya marginal (sekitar . Kerangka ini menyediakan dasar untuk analitik spektral lintas domain dan berpotensi memperbaiki desain bound perturbasi yang lebih presisi di masa depan.

Downloads

Download data is not yet available.

References

R. A. Horn and C. R. Johnson, Matrix Analysis. 2012. doi: 10.1017/cbo9781139020411.

R. Bhatia, Matrix Anlysis. Springer Science+Business Media New Yo, 1997.

A. Patra and P. D. Srivastava, “Relative Perturbation Bounds for Matrix Eigenvalues and Singular Values,” Int. J. Appl. Comput. Math., vol. 4, no. 6, p. 138, 2018, doi: 10.1007/s40819-018-0568-9.

C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural node embeddings via diffusion wavelets,” arXiv, pp. 1320–1329, 2018, doi: 10.1145/3219819.3220025.

J. P. Bagrow and E. M. Bollt, “An information-theoretic, all-scales approach to comparing networks,” arXiv, vol. 4, no. 1, pp. 1–23, 2019, doi: 10.1007/s41109-019-0156-x.

Y. Yu, T. Wang, and R. J. Samworth, “A useful variant of the Davis–Kahan theorem for statisticians,” Biometrika, vol. 102, no. 2, pp. 315–323, Jun. 2015, doi: 10.1093/biomet/asv008.

E. Konukoglu, B. Glocker, A. Criminisi, and K. M. Pohl, “WESD-Weighted spectral distance for measuring shape dissimilarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2284–2297, 2018, doi: 10.1109/TPAMI.2012.275.

A. Greenbaum, R. C. Li, and M. L. Overton, “First-order perturbation theory for eigenvalues and eigenvectors,” arXiv, vol. 62, no. 2, pp. 463–482, 2020, doi: 10.1137/19M124784X.

K. Wang, “Analysis of singular subspaces under random perturbations,” arXiv, pp. 1–68, 2024, [Online]. Available: http://arxiv.org/abs/2403.09170

M. Pensky, “Davis-Kahan Theorem in the two-to-infinity norm and its application to perfect clustering,” arXiv, 2024.

F. Alimisis and B. Vandereycken, “Geodesic Convexity of the Symmetric Eigenvalue Problem and Convergence of Steepest Descent,” J. Optim. Theory Appl., vol. 203, no. 1, pp. 920–959, 2024, doi: 10.1007/s10957-024-02538-8.

N. A. Y, M. I. Jordan, and W. Yair, “On Spectral Clustering: Analysis and algorithm,” Adv. Neural Inf. Process. Syst., vol. 14, pp. 849–856, 2002, [Online]. Available: https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf%0Ahhttp://www.treasury.gov.au/ConsultationsandReviews/Consultations/2016/CFFR-Affordable-Housing-Working-Group

E. Andreotti, D. Edelmann, N. Guglielmi, and C. Lubich, “Measuring the stability of spectral clustering,” Linear Algebra Appl., vol. 610, pp. 673–697, 2021, doi: https://doi.org/10.1016/j.laa.2020.10.015.

S. Huang, H. Weng, and Y. Feng, “Spectral Clustering via Adaptive Layer Aggregation for Multi-Layer Networks,” J. Comput. Graph. Stat., vol. 32, no. 3, pp. 1170–1184, Jul. 2023, doi: 10.1080/10618600.2022.2134874.

D. G. Giovanis, D. Loukrezis, I. G. Kevrekidis, and M. D. Shields, “Polynomial chaos expansions on principal geodesic Grassmannian submanifolds for surrogate modeling and uncertainty quantification,” J. Comput. Phys., vol. 519, pp. 1–50, 2024, doi: 10.1016/j.jcp.2024.113443.

M. Yang, S. Ying, X.-J. Xu, and Y. Gao, “Multi-view Spectral Clustering on the Grassmannian Manifold With Hypergraph Representation,” J. Latex Cl., vol. 14, no. 8, pp. 1–12, 2025, [Online]. Available: http://arxiv.org/abs/2503.06066

L. Ding, C. Li, D. Jin, and S. Ding, “Survey of spectral clustering based on graph theory,” Pattern Recognit., vol. 151, p. 110366, 2024, doi: https://doi.org/10.1016/j.patcog.2024.110366.

E. Andreotti, D. Edelmann, N. Guglielmi, and C. Lubich, “Measuring the stability of spectral clustering,” Linear Algebra Appl., vol. 610, pp. 673–697, 2021, doi: 10.1016/j.laa.2020.10.015.

Downloads

Published

2025-08-01

How to Cite

Vinsensia, D., Utami, Y., Rahmawida, J., & Senjaya, C. P. (2025). Metrik Spektral Terpadu untuk Stabilitas dan Komputasi Eigen Paper. Jurnal Media Informatika, 6(4), 2280-2286. https://doi.org/10.55338/jumin.v6i4.6559