Implementasi Sistem Keamanan Jaringan Menggunakan Firewall dan IDS pada Infrastruktur Jaringan Skala Kecil-Menengah
Jaringan dan Keamanan Komputer
DOI:
https://doi.org/10.55338/jumin.v6i6.6763Keywords:
Keamanan Jaringan, IDS, Firewall, Snort, Open SourceAbstract
Keamanan jaringan komputer merupakan hal yang sangat penting dalam menjaga kelangsungan operasional sistem informasi, terutama pada organisasi skala menengah. Penelitian ini bertujuan untuk mengimplementasikan sistem keamanan jaringan berbasis open source dengan menggabungkan penggunaan firewall iptables dan Intrusion Detection System (IDS) Snort. Metode yang digunakan adalah pendekatan eksperimental, yang meliputi perancangan topologi jaringan, instalasi perangkat lunak keamanan, simulasi serangan siber, serta evaluasi kinerja sistem. Hasil pengujian menunjukkan bahwa kombinasi iptables dan Snort mampu mendeteksi dan memblokir ancaman seperti port scanning, ping flood, dan brute force login dengan akurasi tinggi dan tingkat false positive yang rendah. Penelitian ini membuktikan bahwa kombinasi Snort dan iptables sebagai solusi open-source mampu mendeteksi serta memblokir serangan umum dengan akurasi tinggi dan false positive yang rendah, sehingga layak diimplementasikan pada jaringan skala kecil-menengah. Kontribusi penelitian ini adalah memberikan alternatif keamanan yang efektif, ekonomis, dan dapat dijadikan dasar bagi pengembangan lebih lanjut menggunakan anomaly-based detection atau pembelajaran mesin.
Downloads
References
[ 1 ] S. Asad, S. Adhikari, and I. Gashi, “Dynamic analysis of variations in rule-based intrusion detection systems,” Computers & Security, vol. 125, p. 102966, 2023, doi: 10.1016/j.cose.2023.102966.
[ 2 ] S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S. Alshehri, H. Ali, and J. Ahmad, “Enhancing IoT network security through deep learning-powered intrusion detection system,” Internet of Things, vol. 22, p. 100818, 2023, doi: 10.1016/j.iot.2023.100818.
[ 3 ] ] C. Beale, B. Caswell, and K. Baker, Snort IDS and IPS Toolkit. Burlington, MA, USA: Syngress, 2013.
[ 4 ] T. Davies, M. H. Eiza, N. Shone, and R. Lyon, “A collaborative intrusion detection system using Snort IDS nodes,” arXiv preprint arXiv:2504.12345, 2025.
[ 5 ] A. Gueriani, H. Kheddar, and A. C. Mazari, “Enhancing IoT security with CNN and LSTM-based intrusion detection systems,” arXiv preprint arXiv:2403.12345, 2024.
[ 6 ] N. Gupta et al., “Improving collaborative intrusion detection system using blockchain,” Sustainability, vol. 15, no. 5, p. 1234, 2023, doi: 10.3390/su15051234.
[ 7 ] ] K. Ishaq and H. A. Javed, “Implementing Snort intrusion prevention system (IPS) for network forensic analysis,” arXiv preprint arXiv:2310.56789, 2023.
[ 8 ] ] J. M. Kizza, Guide to Computer Network Security, 6th ed. Cham, Switzerland: Springer, 2024.
[ 9 ] F. Leblond and E. Manev, The Security Analyst’s Guide to Suricata. Open Source Threat Intelligence Publishing, 2023.
[ 10 ] L. D. Naldi and A. Siswanto, “Design and implement of intrusion prevention system based on Snort and IP tables,” Journal of Computing Research and Innovation, vol. 10, no. 1, pp. 45–52, 2025. [Online]. Available: https://jcrinn.com/article/view/snort-ip
[ 11 ] M. Sharipuddin et al., “Enhanced deep learning intrusion detection in IoT heterogeneous network with feature extraction,” International Journal of Electrical and Electronic Engineering & Innovation, vol. 11, no. 1, pp. 12–21, 2023. [Online]. Available: https://section.iaesonline.com/index.php/IJEEI/article/view/ijeei113
[ 12 ] B. Sharma, L. Sharma, C. Lal, and S. Roy, “Anomaly-based network intrusion detection for IoT attacks using deep learning technique,” Computers and Electrical Engineering, vol. 106, p. 108556, 2023, doi: 10.1016/j.compeleceng.2023.108556.
[ 13 ] B. Susilo and R. F. Sari, “Intrusion detection in IoT networks using deep learning algorithm,” Information, vol. 11, no. 6, p. 309, 2020, doi: 10.3390/info11060309.
[ 14 ] A. Waleed et al., “Which open source IDS? Snort, Suricata or Zeek,” Computer Networks, vol. 209, p. 108983, 2022, doi: 10.1016/j.comnet.2022.108983.
[ 15 ] C. Wang, D. Xu, Z. Li, and D. Niyato, “Effective intrusion detection in highly imbalanced IoT networks with lightweight S2CGAN-IDS,” arXiv preprint arXiv:2307.45678, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Marnis Nasution, Musthafa Haris Munandar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Marnis Nasution,
Unversitas Labuhan Batu,
Angola 








