Pemodelan Prediksi Ekspor Kopi Indonesia Berbasis Algoritma Machine Learning

Authors

  • Hilda Yulia Novita, Universitas Buana Perjuangan Karawang,  Indonesia
  • Tatang Rohana, Universitas Buana Perjuangan Karawang,  Indonesia
  • Euis Nurlaelasari, Universitas Buana Perjuangan Karawang,  Indonesia
  • Elsa Elvira Awal, Universitas Buana Perjuangan Karawang,  Indonesia

DOI:

https://doi.org/10.55338/jumin.v6i6.7097

Keywords:

Machine Learning, Linear Regression, Neural Networks, Gradient Boosting, Prediksi Ekspor Kopi

Abstract

Penelitian ini bertujuan untuk membangun model prediksi ekspor kopi di Indonesia dengan menggunakan tiga algoritma machine learning, yaitu regresi inier, neural networks, dan gradient boosting. Data yang digunakan berasal dari data historis ekspor kopi Indonesia. Penelitian dilakukan melalui tahapan pra-pemrosesan data, pemodelan, dan evaluasi kinerja masing-masing algoritma. Hasil penelitian menunjukkan bahwa ketiga algoritma mampu memprediksi ekspor kopi dengan performa yang cukup baik. Algoritma Linear Regression memberikan hasil terbaik dengan nilai mean squared error (MSE) sebesar 0.0000867, mean absolute error (MAE) sebesar 0.00766, dan skor R² sebesar 95%. neural networks menghasilkan MSE sebesar 0.000171, MAE sebesar 0.01196, dan skor R² sebesar 91%. Sementara itu, gradient boosting menunjukkan performa terendah dengan MSE sebesar 0.01918 dan skor R² sebesar 74%. Temuan ini menunjukkan bahwa pendekatan machine learning dapat digunakan sebagai alat bantu dalam memprediksi tren ekspor komoditas secara akurat.

Downloads

Download data is not yet available.

References

M. Gopinath, F. A. Batarseh, J. Beckman, A. Kulkarni, and S. Jeong, “International agricultural trade forecasting using machine learning,” Data Policy, vol. 3, p. e1, Jan. 2021, doi: 10.1017/dap.2020.22.

K. Przybył et al., “Application of Machine Learning to Assess the Quality of Food Products—Case Study: Coffee Bean,” Applied Sciences, vol. 13, no. 19, p. 10786, Sep. 2023, doi: 10.3390/app131910786.

R. de Oliveira Faria et al., “Models for predicting coffee yield from chemical characteristics of soil and leaves using machine learning,” J Sci Food Agric, vol. 104, no. 9, pp. 5197–5206, Jul. 2024, doi: 10.1002/jsfa.13362.

Y. Chen, “Research on Machine Learning-based Prediction of Coffee Futures Prices,” Highlights in Science, Engineering and Technology, vol. 92, pp. 199–209, Apr. 2024, doi: 10.54097/8c9t9n30.

H. Jošić and B. Žmuk, “A Machine Learning Approach to Forecast International Trade: The Case of Croatia,” Business Systems Research Journal, vol. 13, no. 3, pp. 144–160, Oct. 2022, doi: 10.2478/bsrj-2022-0030.

S. Blöthner and M. Larch, “Economic determinants of regional trade agreements revisited using machine learning,” Empir Econ, vol. 63, no. 4, pp. 1771–1807, Oct. 2022, doi: 10.1007/s00181-022-02203-x.

A. Sindar Ros Maryana Sinaga, R. Eka Putra, and A. Suganda Girsang, “Prediction measuring local coffee production and marketing relationships coffee with big data analysis support,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2764–2772, Oct. 2022, doi: 10.11591/eei.v11i5.4082.

S. A. Harjanto, S. Sa’adah, and G. S. Wulandari, “Export Commodity Price Forecasting in Indonesia Using Decision Tree, Random Forest, and Long Short-Term Memory,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 8, no. 4, p. 660, Jan. 2023, doi: 10.26555/jiteki.v8i4.25242.

K. Mayorova and N. Nikita, “Nowcasting Growth Rates of Russia’s Export and Import by Commodity Group,” Russian Journal of Money and Finance, vol. 80, no. 3, pp. 34–48, Sep. 2021, doi: 10.31477/rjmf.202103.34.

M. Danny and A. Muhidin, “Optimasi Algoritma Random Forest untuk Prediksi Eksport Kelapa Sawit Global,” Bulletin of Computer Science Research, vol. 5, no. 5, pp. 1129--1138, Aug. 2025.

R. Erlina and R. Azhar, “FORECASTING MODEL OF AGRICULTURE COMMODITY OF VALUE EXPORT OF COFFEE; APPLICATION OF ARIMA MODEL,” Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), vol. 9, no. 3, p. 257, Sep. 2020, doi: 10.23960/jtep-l.v9i3.257-263.

H. Afdal Fatan, T. Widiharih, and S. Sudarno, “KLASIFIKASI KUALITAS KOPI ARABIKA DENGAN METODE RANDOM FOREST DAN K-NEAREST NEIGHBOR PADA IMBALANCED DATASET,” Jurnal Gaussian, vol. 14, no. 1, pp. 107–117, Jun. 2025, doi: 10.14710/j.gauss.14.1.107-117.

R. Muhammad and I. Nurhaida, “Penerapan LSTM Dalam Deep Learning Untuk Prediksi Harga Kopi Jangka Pendek Dan Jangka Panjang,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 1, pp. 554–564, Mar. 2025.

Y. Chang, M. Hsueh, S. Hung, J. Lu, J. Peng, and S. Chen, “Prediction of specialty coffee flavors based on near‐infrared spectra using machine and deep‐learning methods,” J Sci Food Agric, vol. 101, no. 11, pp. 4705–4714, Aug. 2021, doi: 10.1002/jsfa.11116.

Y. Yunita, N. Yulisa, D. Putri Sekar Mayasari, and P. Pujianto, “Prediksi Harga Kopi Robusta Kabupaten Muara Enim Tahun 2025 Menggunakan Metode Random Forest, SVM & Tree,” Prosiding Seminar Nasional Teknologi Informasi dan Bisnis, pp. 1602–1609, Jul. 2025, doi: 10.47701/f9r5fm79.

T. Rohana, H. Y. Novita, and E. Nurlaelasari, “Komparasi Algoritma Machine Learning dalam Memprediksi Kapasitas Produksi Potensial Air Bersih di Indonesia,” Jurnal Teknologi Terpadu, vol. 11, no. 1, pp. 36–43, Jul. 2025.

Downloads

Published

2025-11-06

How to Cite

Novita, H. Y., Rohana, T. ., Nurlaelasari, E. ., & Awal, E. E. . (2025). Pemodelan Prediksi Ekspor Kopi Indonesia Berbasis Algoritma Machine Learning. Jurnal Media Informatika, 6(6), 2848-2856. https://doi.org/10.55338/jumin.v6i6.7097