Pengembangan Alat Pembangkit Skenario Pengujian Dari BPMN

Authors

  • Fikri Achmad Fauzi, Universitas Islam Indonesia,  Indonesia
  • Novi Setiani, Unversitas Islam Indonesia,  Indonesia

DOI:

https://doi.org/10.55338/jumin.v6i6.7271

Keywords:

BPMN, Depth-First Search, BPMN Testing, Large Language Model, Test Automation

Abstract

Penelitian ini membahas tentang pengembangan alat pembangkit skenario pengujian otomatis dari model Business Process Model and Notation (BPMN) dengan mengintegrasikan algoritma Depth-First Search (DFS) dan Large Language Model (LLM). Pengembangan dilakukan menggunakan metode pengembangan dilakukan menggunakan metode pengembangan perangkat luna secara linier, yang meliputi tahapan analisis kebutuhan, perancangan alat arsitektur, perancangan antarmuka,  dan implementasi sistem. Sistem yang dibangun mengintegrasikan algoritma Depth-First Search (DFS) untuk menelusuri seluruh jalur proses dari start event hingga end event, serta Large Language Model (LLM) untuk menghasilkan skenario pengujian dalam bentuk naratif yang mencakup deskripsi, langkah pengujian, data uji, dan hasil yang diharapkan. Hasil implementasi menunjukkan bahwa sistem mampu menelusuri jalur proses secara menyeluruh dan menghasilkan skenario pengujian yang terstuktur, relevan dengan konteks model BPMN, serta mudah dipahami oleh pengguna. Fitur tambahan seperti visualisasi jalur pada diagram BPMN, riwayat hasil pengujian, dan ekspor laporan ke format Excel maupun PDF untuk meningkatkan efisiensi validasi dan dokumentasi pengujian. Namun, sistem masih menghadapi keterbatasan berupa fenomena path explosion pada model dengan banyak percabangan, peningkatan waktu pemrosesan pada model kompleks, dan variasi redaksi keluaran dari LLM yang masih belum konsisten. Oleh sebab itu, penelitian lanjutan perlu dilakukan untuk mengoptimalkan mekanisme eksplorasi jalur serta standarisasi hasil keluaran agar sistem dapat bekerja lebih efisien pada berbagai model BPMN yang sedang diuji.

Downloads

Download data is not yet available.

References

K. Schneid, L. Stapper, S. Thone, and H. Kuchen, “Automated Regression Tests: A No-Code Approach for BPMN-based Process-Driven Applications,” in Proceedings - 2021 IEEE 25th International Enterprise Distributed Object Computing Conference, EDOC 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 31–40. doi: 10.1109/EDOC52215.2021.00014.

Comidor Team, “10 Must-Know Business Process Management Statistics.” Accessed: Jul. 30, 2025. [Online]. Available: https://www.comidor.com/news/industry-news/bpm-statistics/

Camunda and Regina Corso Consulting, “2024 State of Process Orchestration,” 2024.

T. M. Paiva, T. C. Oliveira, R. M. Pillat, and P. S. C. Alencar, “Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems,” in International Conference on Web Information Systems and Technologies, WEBIST - Proceedings, Science and Technology Publications, Lda, 2023, pp. 128–139. doi: 10.5220/0012211400003584.

T. G. Lopes, “FlowTGE: Automating Functional Testing of Executable Business Process Models Based on BPMN.”

Gopinath Kathiresan, “Automated Test Case Generation with AI: A Novel Framework for Improving Software Quality and Coverage,” World Journal of Advanced Research and Reviews, vol. 23, no. 2, pp. 2880–2889, Aug. 2024, doi: 10.30574/wjarr.2024.23.2.2463.

Tomas Lopes and Sergio Guerreiro, “bpmj-11-2022-0557,” Oct. 2023.

R. R. Riskiana, Ryan Oktaviandi Susilo Wibowo, and Arpriansah Yonathan, “FlowForge: A Prototype for Generating User Stories and Gherkin Test Cases from BPMN with DMN Integration and Pattern Matching,” International Journal on Information and Communication Technology (IJoICT), vol. 10, no. 2, pp. 195–213, Jan. 2025, doi: 10.21108/ijoict.v10i2.1015.

C. Dechsupa, W. Vatanawood, and A. Thongtak, “An automated framework for bpmn model verification achieving branch coverage,” Engineering Journal, vol. 25, no. 2, pp. 135–150, 2021, doi: 10.4186/ej.2021.25.2.135.

P. Von Olberg and L. Strey, “Approach to Generating Functional Test Cases from BPMN Process Diagrams,” in Proceedings of the IEEE International Conference on Requirements Engineering, IEEE Computer Society, 2022, pp. 185–189. doi: 10.1109/REW56159.2022.00042.

A. M. Sami, Z. Rasheed, M. Waseem, Z. Zhang, H. Tomas, and P. Abrahamsson, “A Tool for Test Case Scenarios Generation Using Large Language Models,” Jun. 2024, [Online]. Available: http://arxiv.org/abs/2406.07021

S. Rehan, B. Al-Bander, and A. Al-Said Ahmad, “Harnessing Large Language Models for Automated Software Testing: A Leap Towards Scalable Test Case Generation,” Electronics (Switzerland), vol. 14, no. 7, Apr. 2025, doi: 10.3390/electronics14071463.

L. Leal, L. Montecchi, A. Ceccarelli, and E. Martins, “Using Metamodels to Improve Model-Based Testing of Service Orchestrations.”

Y. Falcone, G. Salaün, and A. Zuo, “Probabilistic Runtime Enforcement of Executable BPMN Processes,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH, 2024, pp. 56–76. doi: 10.1007/978-3-031-57259-3_3.

H. Kourani, A. Berti, D. Schuster, and W. M. P. van der Aalst, “Evaluating large language models on business process modeling: framework, benchmark, and self-improvement analysis,” Softw Syst Model, 2025, doi: 10.1007/s10270-025-01318-w.

Downloads

Published

2025-12-20

How to Cite

Fauzi, F. A., & Setiani, N. (2025). Pengembangan Alat Pembangkit Skenario Pengujian Dari BPMN. Jurnal Media Informatika, 6(6), 3055-3067. https://doi.org/10.55338/jumin.v6i6.7271