Penerapan Algoritma Random Forest Untuk Prediksi Tingkat Stres Dari Aktivitas Media Sosial
DOI:
https://doi.org/10.55338/jumin.v6i6.7765Keywords:
Random Forest, Stres, Media Sosial, Data Mining, Machine LearningAbstract
Penelitian ini bertujuan untuk memprediksi tingkat stres pengguna berdasarkan data numerik yang merepresentasikan perilaku dan kebiasaan sehari-hari, seperti kualitas tidur, durasi penggunaan media sosial, frekuensi olahraga, durasi layar harian, dan indeks kebahagiaan. Pemodelan dilakukan menggunakan algoritma Random Forest melalui workflow pada Orange Data Mining yang mencakup pemuatan dataset, pemilihan atribut, penyesuaian tipe data, pelatihan model, serta evaluasi performa. Pengujian menggunakan Test and Score menunjukkan bahwa Random Forest mampu memberikan performa klasifikasi yang stabil. Visualisasi Bar Plot memperlihatkan distribusi metrik evaluasi yang konsisten, sementara Confusion Matrix menunjukkan bahwa sebagian besar prediksi berada pada kelas medium. Analisis hasil prediksi juga memperkuat kecenderungan model dalam memetakan data ke kategori stres dominan. Secara keseluruhan, penelitian ini menunjukkan bahwa metode Random Forest efektif digunakan untuk deteksi tingkat stres berbasis data numerik perilaku pengguna, serta berpotensi menjadi dasar pengembangan sistem pemantauan kesehatan mental berbasis data.
Downloads
References
T. Nijhawan, G. Attigeri, and T. Ananthakrishna, “Stress Detection Using Natural Language Processing and Machine Learning,” J. Big Data, vol. 9, no. 1, p. 33, 2022, [Online]. Available: https://doi.org/10.1186/s40537-022-00575-6
S. Inamdar, R. Chapekar, S. Gite, and B. Pradhan, “Machine Learning Driven Mental Stress Detection on Reddit Posts Using Natural Language Processing,” Human-Centric Intell. Syst., vol. 3, no. 2, pp. 80–91, 2023, [Online]. Available: 10.1007/s44230-023-00020-8
E. Turcan and K. McKeown, “Dreaddit: A Reddit Dataset for Stress Analysis,” Proc. Int. AAAI Conf. Web Soc. Media, pp. 97–107, 2019, [Online]. Available: https://aclanthology.org/D19-6213.pdf
A. Rastogi, Q. Liu, and E. Cambria, “Stress Detection from Social Media Articles: A New Dataset Benchmark and Analytical Study,” IEEE Int. Conf. Data Min., pp. 1–8, 2022.
Y.-C. Yang, Y.-H. Hung, and K.-C. Lee, “Automatic Detection of Twitter Users Who Express Chronic Stress,” J. Biomed. Heal. Informatics, vol. 41, no. 9, pp. 717–724, 2022, [Online]. Available: 10.1097/CIN.0000000000000985
T. Kasmin, “Stress Detection Through Text in Social Media Using Machine Learning,” Int. J. Adv. Comput. Sci., vol. 61, no. 4, pp. 161–175, 2024, [Online]. Available: https://doi.org/10.37934/araset.61.4.161175
M. Illahi, A. A. Memon, and S. A. Abbasi, “An Ensemble Machine Learning Approach for Stress Detection in Social Media Texts,” Quaid-E-Awam Univ. Res. J., vol. 20, no. 02, pp. 123–128, 2022, [Online]. Available: 10.52584/QRJ.2002.15
A. Priya, “Predicting Anxiety, Depression, and Stress in Modern Life Using Machine Learning Models,” Int. J. Intell. Syst. Appl., vol. 167, pp. 442–451, 2020, [Online]. Available: 10.1016/j.procs.2020.03.442
X. Zhang, Y. Liu, and L. Wang, “Identifying the Predictors of Severe Psychological Distress by Interpretable Machine Learning Methods,” BMC Med. Inform. Decis. Mak., vol. 23, no. 01, p. 335, 2023.
U. Srinivasarao, S. Babu, and M. Singh, “A Novel and Efficient Personalized Stress Detection Using Machine Learning Models,” Sci. Rep., vol. [volume], no. [issue], p. [start page]-[end page], 2025, [Online]. Available: [url or doi]
S. Inamdar, R. Chapekar, and S. Gite, “Machine Learning Models for Cognitive Stress Detection Using Social Media Text,” Int. J. Cogn. Informatics, vol. 3, no. 2, pp. 80–91, 2023, [Online]. Available: 10.1007/s44230-023-00020-8
M. R. Febriansyah, “Stress Detection System for Social Media Users Based on Machine Learning,” J. Soft Comput. Decis. Support Syst., vol. 216, pp. 672–681, 2023, [Online]. Available: 10.1016/j.procs.2022.12.183
P. E. Elisa and A. R. Isnain, “Comparison of Random Forest, Support Vector Machine, and Naive Bayes Algorithms to Analyze Sentiment Toward Mental Health Stigma,” J. Teknol. Inf. dan Terap., vol. 5, no. 2, pp. 37–44, 2024, [Online]. Available: 10.25047/jtit.v5i2.478
N. F. Mahing, A. L. Gunawan, A. Foresta, and A. Zen, “KLASIFIKASI TINGKAT STRES DARI DATA BERBENTUK TEKS DENGAN MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE ( SVM ) DAN CLASSIFICATION OF STRESS LEVELS FROM TEXT DATA USING SUPPORT VECTOR MACHINE ( SVM ) ALGORITHM AND RANDOM FOREST,” vol. 11, no. 5, 2024, doi: 10.25126/jtiik2024118010.
R. F. Surakusumah and R. Y. Apza, “Adaptive Stress Prediction with GSR, SMOTE Balancing, and Random Forest Models,” J. RESTI, vol. 9, no. 4, pp. 805–813, 2025, [Online]. Available: 10.29207/resti.v9i4.6588
V. Oktaviani, N. Rosmawarni, and M. P. Muslim, “Perbandingan Kinerja Random Forest dan SMOTE-Random Forest dalam Mendeteksi dan Mengukur Tingkat Stres Mahasiswa Tingkat Akhir,” Inform. J. Ilmu Komput., vol. 20, no. 01, pp. 43–49, 2025.
Y. Tolla and Kusrini, “Twitter-based Stress and Depression Detection Using SVM and NLP,” J. Inform., 2025, [Online]. Available: https://ejurnal.umri.ac.id/index.php/JIK/article/view/9067
M. E. Johan and S. A. Azka, “Deteksi Stres Menggunakan Multilayer Perceptron dan Indonesian Sentiment Lexicon,” G-Tech J. Inf. Technol., 2022, [Online]. Available: https://ejournal.uniramalang.ac.id/index.php/g-tech/article/view/2611
R. Rachmat, I. Nurhayati, and W. Huljannah, “Analisis Sentimen Ulasan Aplikasi SATUSEHAT Menggunakan Random Forest,” Pros. Teknol. Inf., 2023, [Online]. Available: https://eprosiding-old.ars.ac.id/index.php/pti/article/view/1148
Fitri, Asriyanik, and Apriandari, “Deteksi Kecemasan Generasi Z Menggunakan Random Forest Berbasis Media Sosial,” J. Inform. dan Tek. Elektro Terap., 2025, [Online]. Available: https://journal.eng.unila.ac.id/index.php/jitet/article/view/6905
R. Putra, D. Widyastuti, and H. A. Satria, “Machine Learning Classification Using Public Datasets from Kaggle,” J. Inf. Syst. Res., vol. 6, no. 1, pp. 10–18, 2023, [Online]. Available: https://journal-isr.id/index.php/isr/article/view/83
A. Savić and A. Pribičević, “Using Orange Data Mining for Machine Learning Education,” TEM J., vol. 9, no. 2, pp. 806–812, 2020, doi: 10.18421/TEM92-49.
U. Cahyono, “Using Mendeley as a Reference Manager in Academic Writing,” J. Educ. Learn., vol. 13, no. 2, pp. 123–131, 2019, doi: 10.11591/edulearn.v13i2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 muhammad hussein umar, Rizky Daud Antony Pangaribuan, Raihan Primadana, Sumanto Sumanto, Imam Budiawan, Roida Pakpahan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Muhammad Hussein Umar,
Universitas Bina Sarana Informatika,
Indonesia 








