Analisis Sentimen Masyarakat Di Media Sosial X Terhadap Kemenkes Dengan Naive Bayes dan SVM
Keywords:
SVM, Naïve Bayes, Sentiment Analysis, Social Media X, COVID-19Abstract
This study examines public sentiment on social media platform X regarding Indonesia's Ministry of Health during the COVID-19 pandemic, using Naïve Bayes and Support Vector Machine (SVM) algorithms. Posts mentioning the Ministry’s official account (@KemenkesRI) were preprocessed and labeled using the VADER tool. Sentiment classification was performed with TF-IDF word weighting, and both algorithms were evaluated. Results show SVM achieved slightly higher accuracy (79%) than Naïve Bayes (77%), indicating its effectiveness in handling complex language structures, though it requires more computational resources. This research underscores the utility of SVM for analyzing public sentiment on health policies..
Downloads
References
Kurniawan, I., & Susanto, A. (2019). Implementasi Metode K-Means dan Naà ve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019. Jurnal Eksplora Informatika, 9(1), 1-10.
Lestandy, M., Abdurrahim, A., & Syafa’ah, L. (2021). Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 802-808.
Ananda, F. D., & Pristyanto, Y. (2021). Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 20(2), 407-416.
Romaito, E. S., Anam, M. K., & Rahmaddeni, A. N. U. PERBANDINGAN ALGORITMA SVM DAN NBC DALAM ANALISA SENTIMEN PILKADA PADA TWITTER.
Sautomo, S., Hafidz, N., Achyani, Y. E., & Gata, W. (2020). Sentiment Analysis Due to" Mudik" Prohibited of COVID-19 Through Twitter. JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), 6(1), 7-12.
Samsir, S., Ambiyar, A., Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes. Jurnal Media Informatika Budidarma, 5(1), 157-163.
Prabowo, W. A., & Azizah, F. (2020). Sentiment analysis for detecting cyberbullying using TF-IDF and SVM. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 4(6), 1142-1148.
Hafidz, N., & Liliana, D. Y. (2021). Klasifikasi Sentimen pada Twitter Terhadap WHO Terkait Covid-19 Menggunakan SVM, N-Gram, PSO. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 213-219.
Widowati, T. T. ANALISIS SENTIMEN TWITTER TERHADAP TOKOH PUBLIK DENGAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR.
Pranata, B. (2023). Support Vector Machine untuk Sentiment Analysis Bakal Calon Presiden Republik Indonesia 2024. Indonesian Journal of Computer Science, 12(3).
Faesal, A., Muslim, A., Ruger, A. H., & Kusrini, K. (2020). Sentimen analisis pada data tweet pengguna twitter terhadap produk penjualan toko online menggunakan metode k-means. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 19(2), 207-213.
R. Rasiban and S. . Riyadi, “Analisis Sentimen Opini Masyarakat Terhadap Stadion Jakarta Internasional Stadium (Jis) Pada Twitter Dengan Perbandingan Metode Naive Bayes Dan Support Vector Machine”, SAINTEK, vol. 5, no. 3, pp. 1010-1017, Apr. 2024.
I. B. M. Prawira, B. Solihah, and S. Sari, "Analysis of Oil Sentiment Sentiments on Twitter using Support Vector Machine," Intelmatics, vol. 3, no. 1, pp. 13-16, Jan.-Jun. 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Freddy Andrew Ryandi, Dian Pratiwi, Syandra Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Adzriel Yusak Noah Rumapea, Dian Pratiwi, Syandra Sari, Analisis Segmentasi Pelanggan Ritel Online Menggunakan K-Means Clustering Berdasarkan Model Recency, Frequency, Monetary (RFM) , Jurnal Sains dan Teknologi: Vol. 6 No. 3 (2024): Jurnal Sains dan Teknologi