Kajian pengaruh perubahan penutup lahan terhadap kenaikan suhu permukaan di Kota Yogyakarta

Authors

  • Fitria Nuraini Sekarsih Universitas Amikom Yogyakarta
  • Uswatun Khasanah Universitas Amikom Yogyakarta
  • Panji Setya Gangga Universitas Amikom Yogyakarta
  • Ridho Abdhe Saputra Universitas Amikom Yogyakarta

Keywords:

Landsat 8, Penutup lahan, Perubahan tutupan lahan, Polusi, Suhu permukaan

Abstract

Land cover in Yogyakarta City has changed during 2013-2023. This change is predicted to be the cause of surface temperature increasing in Yogyakarta City. Analysis of the influence of these factors on surface temperature was carried out using Landsat 8 imagery with 4 stages, 1) downloading and making corrections of images; 2) processing the image to obtain the surface temperature value; 3) processing the image to obtain land cover, built-up land, and humidity index values; and 4) making sampling to analyze the relationship between surface temperature and land cover. As a result, there was 0.380 C surface temperature increasing during 2013-2023. This is in line with changes in land cover in Yogyakarta City where the vegetation index has decreased, while the built-up land index has increased. In 2013, land cover was the dominant factor in surface temperature in Yogyakarta City, and it affected of 91.16%. Meanwhile, in 2023 the influence of land cover was only 49.42%. The pandemic era can be a reference for the influence of pollutants on surface temperatures. The results show that there was a significant decrease in temperature during the pandemic become 30.140C. This data is supported by the increase number in motorized vehicles in the City of Yogyakarta. The increase number of motorized vehicle is about 124%  in the past decade.

Downloads

Download data is not yet available.

References

D. Kosasih, I. Nasihin, and E. R. Zulkarnain, “Deteksi Kerapatan Vegetasi dan Suhu Permukaan Tanah Menggunakan Citra Landsat 8 (Studi Kasus : Stasiun Penelitian Pasir Batang Taman Nasional Gunung Ciremai,” Konserv. untuk Kesejaht. Masy., vol. 1, pp. 162–173, 2019.

M. S. Malik, J. P. Shukla, and S. Mishra, “Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India,” Indian J. Geo-Marine Sci., vol. 48, no. 1, pp. 25–31, 2019.

L. Anisa et al., “Indonesia’s Participation in Responding to Global Warming Issues,” Sci. Environ. Journals Postgrad., vol. 4, no. 1, pp. 54–62, 2021, [Online]. Available: http://senjop.ppj.unp.ac.id/index.php/senjop

D. H. García, M. Riza, and J. A. Díaz, “Land Surface Temperature Relationship with the Land Use/Land Cover Indices Leading to Thermal Field Variation in the Turkish Republic of Northern Cyprus,” Earth Syst. Environ., vol. 7, no. 2, pp. 561–580, 2023, doi: 10.1007/s41748-023-00341-5.

N. I. Gusmiarti, Y. Prasetyo, and N. Bashit, “Analisis Korelasi Land Surface Temperature (LST) dengan Penerapan Pembatasan Kegiatan Masyarakat (PKM) (Studi Kasus : Kawasan Sentra Pengasapan Ikan, Bandarharjo, Semarang),” Elipsoida J. Geod. dan Geomatika, vol. 5, no. 2, pp. 61–68, 2022, doi: 10.14710/elipsoida.2022.16741.

I. Dar, J. Qadir, and A. Shukla, “Estimation of LST from multi-sensor thermal remote sensing data and evaluating the influence of sensor characteristics.,” Ann. GIS, vol. 25, no. 3, pp. 263–281, Jul. 2019, doi: 10.1080/19475683.2019.1623318.

N. R. Mahanta and A. K. Samuel, “Study of Land Surface Temperature (LST) and Land Cover for Urban Heat Island (UHI) Analysis in Dubai,” in 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 2020, pp. 1285–1288. doi: 10.1109/ICRITO48877.2020.9198038.

F. P. Arvelia, A. N. A, S. Bahar, A. F. Pramitha, A. N. Ardiansyah, and S. Bahar, “Analisis Hubungan Perubahan Penggunaan Lahan terhadap LST di Kota Tangerang,” Bul. Meteorol. Klimatologi, Dan Geofis., vol. 4, no. 5, pp. 10–21, 2023.

N. F. Mulyana, F. Usman, and A. W. Hasyim, “Pengaruh Perubahan Tutupan Lahan Terhadap Perubahan Suhu Permukaan Di Kawasan Perkotaan Karawang,” Plan. Urban Reg. Environ. J., vol. 12, no. 1, pp. 77–84, 2023, [Online]. Available: https://purejournal.ub.ac.id/index.php/pure/article/view/466

S. Javadinejad, S. Eslamian, and K. Ostad-Ali-Askari, “Investigation of monthly and seasonal changes of methane gas with respect to climate change using satellite data,” Appl. Water Sci., vol. 9, no. 8, pp. 3–10, 2019, doi: 10.1007/s13201-019-1067-9.

L. Y. Murni, I. M. Yuliara, and W. Windaryoto, “Distribusi Land Surface Temperature (LST) Menggunakan Metode Spasial Berdasarkan Citra Landsat 8 di Kabupaten Manggarai Nusa Tenggara Timur Pada Periode Juni-Juli 2015-2019,” Bul. Fis., vol. 24, no. 1, p. 1, 2021, doi: 10.24843/bf.2023.v24.i01.p01.

S. Hussain et al., “Relation of land surface temperature with different vegetation indices using multi-temporal remote sensing data in Sahiwal region, Pakistan,” Geosci. Lett., vol. 10, no. 1, 2023, doi: 10.1186/s40562-023-00287-6.

A. F. N. Insan and F. V. A. S. Prasetya, “Sebaran Land Surface Temperature Dan Indeks Vegetasi Di Wilayah Kota Semarang Pada Bulan Oktober 2019,” Bul. Poltanesa, vol. 22, no. 1, pp. 45–52, 2021, doi: 10.51967/tanesa.v22i1.471.

M. A. Hossain, S. Sultana, and M. R. Siddiqui, “Effects of the Nature of Urban Development on Land Surface Temperature (LST) at the Neighbourhood Scale in Dhaka City, Bangladesh,” Environ. Urban. ASIA, vol. 13, no. 2, pp. 284–303, 2022, doi: 10.1177/09754253221121299.

G. S. Jannah and F. Bioresita, “Pemantauan Land Surface Temperature (LST) dan Kaitannya dengan Tutupan Lahan (Studi Kasus: Kota Surabaya Tahun 2014-2022),” J. Tek. ITS, vol. 12, no. 2, 2023, doi: 10.12962/j23373539.v12i2.122579.

S. Yin, J. Liu, and Z. Han, “Relationship between urban morphology and land surface temperature—A case study of Nanjing City,” PLoS One, vol. 17, no. 2 February, pp. 1–17, 2022, doi: 10.1371/journal.pone.0260205.

J. Tan, D. Yu, Q. Li, X. Tan, and W. Zhou, “Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China,” Sci. Rep., vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-66168-6.

J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159–174, Jun. 1977, doi: 10.2307/2529310.

K. Abbass, M. Z. Qasim, H. Song, M. Murshed, H. Mahmood, and I. Younis, “A review of the global climate change impacts, adaptation, and sustainable mitigation measures,” Environ. Sci. Pollut. Res., vol. 29, no. 28, pp. 42539–42559, 2022, doi: 10.1007/s11356-022-19718-6.

G. Suthar, R. P. Singhal, S. Khandelwal, and N. Kaul, “Spatiotemporal variation of air pollutants and their relationship with land surface temperature in Bengaluru, India,” Remote Sens. Appl. Soc. Environ., vol. 32, p. 101011, 2023, doi: https://doi.org/10.1016/j.rsase.2023.101011.

BPS, Kota Yogyakarta Dalam Angka 2013. Badan Pusat Statistik, 2013. [Online]. Available: https://jogjakota.bps.go.id/publication/2013/07/09/f002af7b53202cfc9b109bbe/kota-yogyakarta-dalam-angka-2013.html

BPS, Kota Yogyakarta Dalam Angka 2023. 2023. [Online]. Available: https://jogjakota.bps.go.id/publication/2023/02/28/9510c8b16be475ce64f99471/kota-yogyakarta-dalam-angka-2023.html

Downloads

Published

2024-06-29

How to Cite

Nuraini Sekarsih, F., Khasanah, U., Gangga, P. S., & Saputra, R. A. (2024). Kajian pengaruh perubahan penutup lahan terhadap kenaikan suhu permukaan di Kota Yogyakarta. Jurnal Media Informatika, 5(2), 76-82. Retrieved from https://ejournal.sisfokomtek.org/index.php/jumin/article/view/3321