Perbandingan Metode Naïve Bayes dan K-Nearest Neighbor Terhadap Sentimen Analisis Pinjaman Online
DOI:
https://doi.org/10.55338/jumin.v6i3.5687Keywords:
Sentimen Analisis, Klasifikasi, Naïve Bayes, K – Nearest Neighbors, Tweet, PerbandinganAbstract
This study aims to understand the public opinion in Indonesia regarding the existence of online loans. Online loans are a type of banking service through technology known as the Financial Technology (FinTech) Industry. According to a report by the Financial Services Authority, in August 2023, more than 13.37 million accounts were using this service. Online loan services are considered to provide convenience and comfort for consumers. However, many harmful cases have emerged, such as extremely high interest rates and aggressive debt collection practices that have caused public concern. Therefore, a sentiment analysis is conducted to understand public opinions, which can serve as a reference for online loan service providers and operators. By using 11,288 Indonesian-language tweets, the public opinion on online loans is analyzed. The study employs two sentiment analysis methods: Naïve Bayes and K-Nearest Neighbor. The results of the study show that the sentiment toward online loans is 62.29% negative, 33.19% neutral, and 5.52% positive. The results also indicate that the Naïve Bayes method has slightly higher accuracy (67%) compared to the K-Nearest Neighbor method (63%). It is hoped that this sentiment will have a positive impact on online loan service providers and operators.
Downloads
References
Maulidya, G. P, Afifah, N. 2021. Perbankan Dalam Era Baru Digital : Menuju Bank 4.0. Prosiding Bisnis Seri V. Pascasarjana FE Universitas Tanjungpura, Jl. Imam Bonjol.
Otoritas Jasa Keuangan. 2023. Penyelenggara Fintech Lending Berijin di OJK per 9 Oktober 2023. https://ojk.go.id/id/kanal/iknb/financial-technology/Pages/Penyelenggara-Fintech-Lending-Berizin-di-OJK-per-9-Oktober-2023.aspx
Yovie Bramantyo Adji. Y. B, Muhamad, W. A, Akrabi, A. N. L, Noerlina. 2023. Perkembangan Inovasi Fintech di Indonesia. Jurnal BECCOS : Business Economic, Communication, and Social Sciences, Vol. 5 No. 1, January 2023, pp : 47 – 58. DOI : 10.21512/becossjournal.v5i1.8675
Otoritas Jasa Keuangan. 2016. POJK Nomor 77/POJK.01/2016 tentang Layanan Pinjam Meminjam Uang Berbasis Teknologi Informasi
Otoritas Jasa Keuangan. 2023. Siaran Pers Sektor Jasa Keuangan Tetap Terjaga Stabil Ditopang Permodalan Yang Kuat Dan Likuiditas Memadai.
Latifa, F. A. 2023. Analisis Penggunakan Financial Technology pada UMKM di Yogyakarta Pasca Covid -19. Academic Collection, Universitas Islam Indonesia. https://dspace.uii.ac.id/handle/123456789/45984
Otoritas Jasa Keuangan. 2023. Statistik Lending Periode Juli 2023.
S. Surohman, S. Aji, R. Rousyati, and F. F. Wati, “Analisa Sentimen Terhadap Review Fintech Dengan Metode Naive Bayes Classifier Dan K- Nearest Neighbor,” Evolusi, vol. 8, no. 1, Mar. 2020, doi: 10.31294/evolusi.v8i1.7535.
T. Ramadhan, D. Wahiddin, and E. Awal, “Klasifikasi Sentimen Terhadap Pinjaman Online (Pinjol) Menggunakan Algoritma Naive Bayes,” Scientific Student Journal for Information, Technology and Science, vol. 4, no. 1, Art. no. 1, Jan. 2023.
F. M. D. Maharani, A. L. Hananto, S. S. Hilabi, F. N. Apriani, A. Hananto, and B. Huda, “Perbandingan Metode Klasifikasi Sentimen Analisis Penggunaan E-Wallet Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbor,” METIK JURNAL, vol. 6, no. 2, Art. no. 2, Dec. 2022, doi: 10.47002/metik.v6i2.372.
S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 5, no. 3, pp. 279–285, Dec. 2019, doi: 10.26418/jp.v5i3.34368.
L. Oktasari, Y. H. Chrisnanto, and R. Yuniarti, “TEXT MINING DALAM ANALISIS SENTIMEN ASURANSI MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER,” Prosiding Seminar Sains Nasional dan Teknologi, vol. 1, no. 1, Art. no. 1, Sep. 2016, doi: 10.36499/psnst.v1i1.1506.
L. R. Dharmawan, I. Arwani, and D. E. Ratnawati, “Analisis Sentimen pada Sosial Media Twitter Terhadap Layanan Sistem Informasi Akademik Mahasiswa Universitas Brawijaya dengan Metode K-Nearest Neighbor,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 3, Art. no. 3, Jun. 2020
T. A. Aliah, “Penerapan Metode Naive Bayes dalam Analisis Sentimen pada Twitter (Studi Kasus: Hasil Debat Calon Presiden 2019),” SISTEM INFORMASI, FAKULTAS ILMU KOMPUTER UNIVERSITAS JEMBER, 2019, Accessed: Nov. 01, 2023. [Online]. Available: https://repository.unej.ac.id/xmlui/handle/123456789/98626
H. Nobertus Krisandi, “ALGORITMA k-NEAREST NEIGHBOR DALAM KLASIFIKASI DATA HASIL PRODUKSI KELAPA SAWIT PADA PT. MINAMAS KECAMATAN PARINDU,” Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 2, no. 1, Mar. 2013, doi: 10.26418/bbimst.v2i1.1540.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yovinia Carmeneja Hoar Siki, Thomas Boris Asalodan Tokan, Donatus Joseph Manehat, Emerensiana Ngaga, Sisilia Daeng Bakka Mau

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.