Pengembangan Sistem Pengenalan Pola Citra Spion Kendaraan Motor untuk Deteksi Pelanggaran Arus Lalu Lintas pada Jalan Satu Arah

Authors

  • Sitti Mawaddah Umar Politeknik Kesehatan Megarezky
  • Universitas Mega Buana Palopo

DOI:

https://doi.org/10.55338/jumin.v6i3.6052

Abstract

This study aims to detect traffic violations, specifically motorcycles riding against the flow on one-way roads, by utilizing computer vision technology to recognize the rearview patterns of vehicles. The method employed involves applying the deep learning model Faster-RCNN for object detection, using image data captured from an IP camera mounted on a pole at a height of 2.5 meters with a 45-degree tilt angle to optimally monitor vehicles from behind. Image labeling was performed using the LabelImg application, while model training and classification were conducted using the TensorFlow framework. The developed system achieved a detection accuracy of 88%, demonstrating the effectiveness of this approach in identifying motorcycles violating traffic direction. These findings highlight the potential of computer vision as an automatic and real-time solution for traffic monitoring, which can help reduce dangerous violations and enhance road safety. Therefore, this research contributes significantly to the development of more advanced and efficient traffic violation detection systems.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik, Laporan Statistik Transportasi Indonesia 2020, Jakarta: BPS, 2020

Kementerian Perhubungan Republik Indonesia, Laporan Studi Sistem Jalan Satu Arah, Jakarta, 2018.

Republik Indonesia, Undang-Undang No. 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan, Jakarta: DPR RI, 2009.

R. Susanto, D. Wibowo, dan S. Putra, “Pengembangan Sistem Pemantauan Lalu Lintas Berbasis Kamera dan Visi Komputer,” Jurnal Teknologi Informasi, vol. 15, no. 2, pp. 110-118, 2021.

J. Redmon dan A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv preprint arXiv:1804.02767, 2018.

T. Lin et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017.

H. Chen et al., “Vehicle Pose Estimation Using Deep Learning-Based Faster R-CNN,” Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 1234-1239, 2019.

A. Kumar dan R. Singh, “Vehicle Detection in Video Surveillance Using Gaussian Mixture Model and Morphological Operations,” International Journal of Computer Applications, vol. 45, no. 12, pp. 25-32, 2019.

S. Ren, K. He, R. Girshick, dan J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” Advances in Neural Information Processing Systems, vol. 28, pp. 91-99, 2015.

K. He, X. Zhang, S. Ren, dan J. Sun, “Deep Residual Learning for Image Recognition,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

R. Girshick, “Fast R-CNN,” IEEE International Conference on Computer Vision (ICCV), pp. 1440-1448, 2015.

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

X. Glorot dan Y. Bengio, “Understanding the Difficulty of Training Deep Feedforward Neural Networks,” Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249-256, 2010.

R. Girshick, “Fast R-CNN,” IEEE International Conference on Computer Vision, pp. 1440-1448, 2015.

Downloads

Published

2025-05-28

How to Cite

Sitti Mawaddah Umar, & Justam. (2025). Pengembangan Sistem Pengenalan Pola Citra Spion Kendaraan Motor untuk Deteksi Pelanggaran Arus Lalu Lintas pada Jalan Satu Arah: Array. Jurnal Media Informatika, 6(3), 1784-1792. https://doi.org/10.55338/jumin.v6i3.6052