Aplikasi Monitor dan Prediksi Tingkat Polusi Udara Berbasis Web dengan Streamlit
Keywords:
Kualitas udara, Benzena (C6H6), Random Forest, XGBoost, StreamlitAbstract
Penelitian ini mengembangkan model machine learning untuk memprediksi konsentrasi Benzena C6H6(GT) dan merancang aplikasi web berbasis Streamlit untuk monitoring serta prediksi kualitas udara secara real-time. Dataset Air Quality dari UCI (9.357 rekaman per jam, Maret 2004–Februari 2005) digunakan dengan pembersihan nilai hilang, penghapusan NMHC(GT) yang dominan hilang, interpolasi berbasis waktu, serta rekayasa fitur waktu dan meteorologi. Pemodelan regresi membandingkan Linear Regression, Random Forest, dan XGBoost menggunakan pembagian data 80/20, standardisasi fitur, dan evaluasi dengan MAE, MSE, serta R-squared. Hasil menunjukkan Random Forest sebagai model terbaik dengan MAE 1.1444, MSE 3.5262, dan R² 0.8900, mengungguli XGBoost dan Linear Regression. Model terbaik diintegrasikan ke aplikasi Streamlit sehingga pengguna dapat memasukkan parameter seperti suhu dan kelembapan dan memperoleh prediksi konsentrasi Benzena secara langsung melalui antarmuka yang ramah pengguna. Temuan ini menegaskan bahwa kombinasi fitur waktu dan cuaca efektif untuk memodelkan polutan dan implementasi web memungkinkan pemanfaatan praktis untuk pemantauan serta pengambilan keputusan. Secara keseluruhan, solusi ini valid secara prediktif dan layak diterapkan sebagai alat bantu fungsional untuk memonitor tingkat polusi udara.
Downloads
References
P. Mottahedin, B. Chahkandi, R. Moezzi, A. M. Fathollahi-Fard, M. Ghandali, and M. Gheibi, “Air quality prediction and control systems using machine learning and adaptive neuro-fuzzy inference system,” Heliyon, vol. 10, no. 21, p. e39783, 2024, doi: 10.1016/j.heliyon.2024.e39783.
Y. Özüpak, F. Alpsalaz, and E. Aslan, “Air Quality Forecasting Using Machine Learning: Comparative Analysis and Ensemble Strategies for Enhanced Prediction,” Water. Air. Soil Pollut., vol. 236, no. 7, pp. 1–17, 2025, doi: 10.1007/s11270-025-08122-8.
C. Praveen, R. V. V. S. V Prasad, A. Guna, and S. Krishna, “International Journal of Research Publication and Reviews Deep Learning-Based Real-Time Air Quality Prediction and Pollution Monitoring System,” vol. 6, no. 4, pp. 3358–3364, 2025.
G. Ravindiran, G. Hayder, K. Kanagarathinam, A. Alagumalai, and C. Sonne, “Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam,” Chemosphere, vol. 338, no. May, p. 139518, 2023, doi: 10.1016/j.chemosphere.2023.139518.
S. Chadalavada et al., “Application of artificial intelligence in air pollution monitoring and forecasting : A systematic review,” Environ. Model. Softw., vol. 185, no. September 2024, p. 106312, 2025, doi: 10.1016/j.envsoft.2024.106312.
L. Naizabayeva, G. Sembina, A. Aliman, and M. Satymbekov, “Air Pollution Forecasting in Almaty using Ensemble Machine Learning Models,” vol. 6, no. 4, pp. 2461–2476, 2025.
R. K. Sapkota, N. Adhikari, C. Subedi, R. Jha, and M. Subedi, “Web Application Prototype on Air Quality Index Prediction , Monitoring , and Information Dissemination System : Machine Learning and Python-Streamlit-based Application Tailored for Kathmandu Metropolitan City,” 2025.
J. Kaliappan, K. Srinivasan, and S. M. Qaisar, “Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate,” vol. 9, no. September, pp. 1–12, 2021, doi: 10.3389/fpubh.2021.729795.
S. Tırınk, “Machine learning-based forecasting of air quality index under long-term environmental patterns : A comparative approach with XGBoost , LightGBM , and SVM,” pp. 1–21, 2025, doi: 10.1371/journal.pone.0334252.
O. Rainio, “Evaluation metrics and statistical tests for machine learning,” Sci. Rep., pp. 1–14, 2024, doi: 10.1038/s41598-024-56706-x.
J. A. S. Cenita and P. R. F. Asuncion, “Performance Evaluation of Regression Models in Predicting the Cost of Medical Insurance,” vol. 7, pp. 2052–2065, 2023, doi: 10.25147/ijcsr.2017.001.1.146.
H. Khoshvaght, R. Ramyad, A. Razmjou, and M. Khiadani, “Journal of Environmental Chemical Engineering A critical review on selecting performance evaluation metrics for supervised machine learning models in wastewater quality prediction,” J. Environ. Chem. Eng., vol. 13, no. 6, p. 119675, 2025, doi: 10.1016/j.jece.2025.119675.
M. R. Salmanpour, M. Alizadeh, G. Mousavi, S. Sadeghi, S. Amiri, and M. Oveisi, “Machine Learning Evaluation Metric Discrepancies across Programming Languages and Their Components : Need for Standardization,” 2025, doi: 10.1109/ACCESS.2025.3549702.
C. Res, C. J. Willmott, and K. Matsuura, “Advantages of the mean absolute error ( MAE ) over the root mean square error ( RMSE ) in assessing average model performance,” vol. 30, pp. 79–82, 2005.
S. M. R. Id and C. J. Willmott, “Decomposition of the mean absolute error ( MAE ) into systematic and unsystematic components,” pp. 1–8, 2023, doi: 10.1371/journal.pone.0279774.
T. O. Hodson, “Root-mean-square error ( RMSE ) or mean absolute error ( MAE ): when to use them or not,” no. 2, pp. 5481–5487, 2022.
D. Chicco, M. J. Warrens, and G. Jurman, “The coef fi cient of determination R-squared is more informative than SMAPE , MAE , MAPE , MSE and RMSE in regression analysis evaluation,” pp. 1–24, 2021, doi: 10.7717/peerj-cs.623.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Muhammad Ikmal Tawakal, Dony Marulitua Simanungkalit, Yohanes Septian Hildegardis, Reno Nurhadi, Lisnawanty Lisnawanty

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Muhammad Ikmal Tawakal,
Universitas Bina Sarana Informatika,
Indonesia 








