Pengaruh Hybrid Adaptive Repairing Genetic Algorithm dan VIKOR-Based Fitness dalam Optimasi Penjadwalan Perkuliahan
DOI:
https://doi.org/10.55338/jumin.v7i1.7676Keywords:
Algoritma Hybrid Genetika, Hybrid Adaptif Repairing, Vikor-Based Fitness, Optimasi Penjadwalan, Multi-Criteria Decision Making (MCDM)Abstract
Permasalahan penjadwalan perkuliahan merupakan masalah optimasi multi-kriteria yang kompleks karena melibatkan berbagai constraint yang saling berkonflik. Penelitian ini mengusulkan penerapan Hybrid Adaptive Repairing Genetic Algorithm (HAR-GA) yang dikombinasikan dengan VIKOR-based fitness untuk meningkatkan kualitas solusi penjadwalan. Mekanisme adaptive repairing digunakan untuk memperbaiki solusi infeasible secara eksplisit selama proses evolusi, sedangkan VIKOR diterapkan sebagai fungsi fitness untuk menyeimbangkan pelanggaran antar kriteria constraint. Evaluasi dilakukan dengan membandingkan HAR-GA terhadap algoritma genetika tanpa mekanisme repair serta HAR-GA dengan fitness standar. Hasil eksperimen menunjukkan bahwa HAR-GA mampu menghasilkan solusi feasible dengan best violation = 0 pada generasi ke-162, sementara algoritma genetika tanpa repairing masih menghasilkan rata-rata minimum violation sebesar 252,16. Selain itu, HAR-GA menurunkan rata-rata minimum violation menjadi 52,82 dan rata-rata maksimum violation menjadi 105,28. Integrasi VIKOR-based fitness memberikan peningkatan kinerja lebih lanjut dengan menurunkan rata-rata minimum violation sebesar 38,8%, rata-rata mean violation sebesar 33,5%, serta standar deviasi sebesar 45,6% dibandingkan fitness standar. Hasil ini menunjukkan bahwa kombinasi HAR-GA dan VIKOR-based fitness efektif dalam meningkatkan kualitas, stabilitas, dan keseimbangan solusi pada permasalahan optimasi penjadwalan multi-kriteria.
Downloads
References
M. C. Chen, S. N. Sze, S. L. Goh, N. R. Sabar, and G. Kendall, “A Survey of University Course Timetabling Problem: Perspectives, Trends and Opportunities,” IEEE Access, vol. 9, pp. 106515–106529, 2021, doi: 10.1109/ACCESS.2021.3100613.
N. Page, G. Forster-Wilkins, and M. Bonetzky, “The impact of student timetables and commuting on student satisfaction,” New Directions in the Teaching of Physical Sciences, no. 16, May 2021, doi: 10.29311/ndtps.v0i16.3793.
M. Davison, A. Kheiri, and K. G. Zografos, “Modelling and solving the university course timetabling problem with hybrid teaching considerations,” Journal of Scheduling, vol. 28, no. 2, pp. 195–215, Apr. 2025, doi: 10.1007/s10951-024-00817-w.
S. Abdipoor, R. Yaakob, S. L. Goh, and S. Abdullah, “Meta-heuristic approaches for the University Course Timetabling Problem,” Sep. 01, 2023, Elsevier B.V. doi: 10.1016/j.iswa.2023.200253.
H. Izakian, A. Abraham, and V. Snášel, “Metaheuristic based scheduling meta-tasks in distributed heterogeneous computing systems,” Sensors, vol. 9, no. 7, pp. 5339–5350, Jul. 2009, doi: 10.3390/s90705339.
A. R. Mahlous and H. Mahlous, “Student timetabling genetic algorithm accounting for student preferences,” PeerJ Comput Sci, vol. 9, 2023, doi: 10.7717/peerj-cs.1200.
K. Sylejmani, E. Gashi, and A. Ymeri, “Simulated annealing with penalization for university course timetabling,” Journal of Scheduling, vol. 26, no. 5, pp. 497–517, Oct. 2023, doi: 10.1007/s10951-022-00747-5.
G. Christopher and A. Wicaksana, “Particle swarm optimization for solving thesis defense timetabling problem,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 19, no. 3, pp. 762–769, Jun. 2021, doi: 10.12928/TELKOMNIKA.v19i3.18792.
F. Juárez-Pérez, M. A. Cruz-Chávez, R. Rivera-López, E. Y. Ávila-Melgar, M. L. Eraña-Díaz, and M. H. Cruz-Rosales, “Grid-Based Hybrid Genetic Approach to Relaxed Flexible Flow Shop with Sequence-Dependent Setup Times,” Applied Sciences (Switzerland), vol. 12, no. 2, Jan. 2022, doi: 10.3390/app12020607.
E. Yulia Sari, D. Yulina Heriyani, and dan Titik Rahmawati, “Pemodelan Sistem Optimasi Penjadwalan Matakuliah dengan Algoritma Genatika,” Teknimedi, vol. 1, pp. 70–78, Jun. 2023.
B. Muqdamien and A. Hestiningtyas, “Towards Fair and Efficient Timetabling: A Genetic Algorithm Model Integrating Lecturer Day-Off Requests,” International Journal on Informatics for Development, vol. 14, no. 1, pp. 575–586, 2025, doi: 10.14421/ijid.2025.5067.
D. Nasien and A. Andi, “Optimization of Genetic Algorithm in Courses Scheduling,” IT Journal Research and Development, pp. 151–161, Feb. 2022, doi: 10.25299/itjrd.2022.7896.
Jalal-Ud-din, Ehtasham-Ul-haq, I. M. Almanjahie, and I. Ahmad, “Enhancing probabilistic based real-coded crossover genetic algorithms with authentication of VIKOR multi-criteria optimization method,” AIMS Mathematics, vol. 9, no. 10, pp. 29250–29268, 2024, doi: 10.3934/math.20241418.
S. H. Moon and Y. Yoon, “An adaptive greedy repair operator in a genetic algorithm for the minimum vertex cover problem,” AIMS Mathematics, vol. 10, no. 6, pp. 13365–13392, 2025, doi: 10.3934/math.2025600.
A. Falih and A. Z. M. Shammari, “Hybrid constrained permutation algorithm and genetic algorithm for process planning problem,” J Intell Manuf, vol. 31, no. 5, pp. 1079–1099, Jun. 2020, doi: 10.1007/s10845-019-01496-7.
A. R. Mahlous and H. Mahlous, “Student timetabling genetic algorithm accounting for student preferences,” PeerJ Comput Sci, vol. 9, 2023, doi: 10.7717/peerj-cs.1200.
A. Mardani, E. K. Zavadskas, K. Govindan, A. A. Senin, and A. Jusoh, “VIKOR technique: A systematic review of the state of the art literature on methodologies and applications,” 2016, MDPI. doi: 10.3390/su8010037.
S. Han and L. Xiao, “An improved adaptive genetic algorithm,” SHS Web of Conferences, vol. 140, p. 01044, 2022, doi: 10.1051/shsconf/202214001044.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Eka Yulia Sari, Titik Rahmawati, Agung Priyanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Eka Yulia Sari,
Universitas Sarjanawiyata Tamansiswa,
Indonesia 








