Tinjauan Sistematis: Teknik eye tracking untuk penyakit Skizofrenia

Authors

  • Septua Fujima Saragih Universitas Prima Indonesia
  • Ricci Kincahar Bastoto Kevin Ginting Universitas Prima Indonesia
  • Yusuf Natanael Simajuntak Universitas Prima Indonesia
  • Adli Abdillah Nasution Universitas Prima Indonesia
  • Evta Indra Universitas Prima Indonesia

Keywords:

Eye Tracking Technology, Schizophreni, Cognitive Analysis, Machine Learning, Eye fixation

Abstract

Eye tracking technology has emerged as an innovative tool for understanding and diagnosing schizophrenia, demonstrating significant potential in revealing different eye movement patterns between patients and healthy individuals. Literature studies indicate that irregular eye fixations and inconsistent saccades in schizophrenia patients may indicate disruptions in visual information processing and attention allocation. Eye tracking metrics, such as gaze duration and fixation stability, provide crucial insights into cognitive functions and emotional states in patients. Integration of eye tracking technology with machine learning techniques, including eXtreme Gradient Boosting (XGB) and Support Vector Machines (SVM), has achieved diagnostic accuracy up to 94%, highlighting its potential to enhance diagnostic precision. Despite these promising advances, challenges such as symptom variability among individuals, patient comfort, and the need for standard protocols remain. The development of non-intrusive eye tracking systems and applications in virtual reality (VR) shows potential for innovative therapies. Further research is needed to address these challenges and ensure effective and consistent implementation of this technology in clinical practice.

Downloads

Download data is not yet available.

References

M. Sasseville et al., “The impact of technology systems and level of support in digital mental health interventions: a secondary meta-analysis,” Syst Rev, vol. 12, no. 1, p. 78, May 2023, doi: 10.1186/s13643-023-02241-1.

L. Kremer, M. Lipprandt, R. Röhrig, and B. Breil, “Examining Mental Workload Relating to Digital Health Technologies in Health Care: Systematic Review,” J Med Internet Res, vol. 24, no. 10, p. e40946, Oct. 2022, doi: 10.2196/40946.

G. Ramshaw, A. McKeown, R. Lee, A. Conlon, D. Brown, and P. J. Kennedy, “Introduction of Technology to Support Young People’s Care and Mental Health—A Rapid Evidence Review,” Child Youth Care Forum, vol. 52, no. 3, pp. 509–531, Jun. 2023, doi: 10.1007/s10566-022-09700-1.

F. R. Iaconis, M. A. Trujillo Jiménez, G. Gasaneo, O. A. Rosso, and C. A. Delrieux, “Ordinal pattern transition networks in eye tracking reading signals,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 33, no. 5, May 2023, doi: 10.1063/5.0142230.

M.-C. Sáiz-Manzanares, R. Marticorena-Sánchez, L.-J. Martín-Antón, L. Almeida, and M.-Á. Carbonero-Martín, “Application and challenges of eye tracking technology in Higher Education,” Comunicar, vol. 31, no. 76, Jul. 2023, doi: 10.3916/C76-2023-03.

Y. Shi et al., “Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface,” Nat Commun, vol. 14, no. 1, p. 3315, Jun. 2023, doi: 10.1038/s41467-023-39068-2.

K. P. Kruzan, A. Ng, C. Stiles-Shields, E. G. Lattie, D. C. Mohr, and M. Reddy, “The Perceived Utility of Smartphone and Wearable Sensor Data in Digital Self-tracking Technologies for Mental Health,” in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, New York, NY, USA: ACM, Apr. 2023, pp. 1–16. doi: 10.1145/3544548.3581209.

L. Orsolini, S. Pompili, and U. Volpe, “Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects,” J Clin Med, vol. 11, no. 17, p. 5040, Aug. 2022, doi: 10.3390/jcm11175040.

J. Lieberman, “A Once Malignant Malady: the Story of Schizophrenia and the Path to Prevention,” European Psychiatry, vol. 65, no. S1, pp. S4–S4, Jun. 2022, doi: 10.1192/j.eurpsy.2022.39.

R. A. McCutcheon, R. S. E. Keefe, and P. K. McGuire, “Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment,” Mol Psychiatry, vol. 28, no. 5, pp. 1902–1918, May 2023, doi: 10.1038/s41380-023-01949-9.

A. L. Martínez, J. Brea, S. Rico, M. T. de los Frailes, and M. I. Loza, “Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments,” Int J Mol Sci, vol. 22, no. 18, p. 9905, Sep. 2021, doi: 10.3390/ijms22189905.

V. Skaramagkas et al., “Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes,” IEEE Rev Biomed Eng, vol. 16, pp. 260–277, 2023, doi: 10.1109/RBME.2021.3066072.

A. A. Chrobak et al., “Vergence eye movements impairments in schizophrenia and bipolar disorder,” J Psychiatr Res, vol. 156, pp. 379–389, Dec. 2022, doi: 10.1016/j.jpsychires.2022.10.042.

C. Soria, Y. Arroyo, A. M. Torres, M. Á. Redondo, C. Basar, and J. Mateo, “Method for Classifying Schizophrenia Patients Based on Machine Learning,” J Clin Med, vol. 12, no. 13, p. 4375, Jun. 2023, doi: 10.3390/jcm12134375.

S. Verma, T. Goel, M. Tanveer, W. Ding, R. Sharma, and R. Murugan, “Machine learning techniques for the Schizophrenia diagnosis: a comprehensive review and future research directions,” J Ambient Intell Humaniz Comput, vol. 14, no. 5, pp. 4795–4807, May 2023, doi: 10.1007/s12652-023-04536-6.

B. Noyes, A. Biorac, G. Vazquez, S. Khalid-Khan, D. Munoz, and L. Booij, “Eye-tracking in adult depression: protocol for a systematic review and meta-analysis,” BMJ Open, vol. 13, no. 6, p. e069256, Jun. 2023, doi: 10.1136/bmjopen-2022-069256.

B. Birawo and P. Kasprowski, “Review and Evaluation of Eye Movement Event Detection Algorithms,” Sensors, vol. 22, no. 22, p. 8810, Nov. 2022, doi: 10.3390/s22228810.

V. Skaramagkas et al., “Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes,” IEEE Rev Biomed Eng, vol. 16, pp. 260–277, 2023, doi: 10.1109/RBME.2021.3066072.

R. E. Edison, Y. H. Anisa, and F. R. Fauzy, “ANALISIS ATENSI VISUAL PEROKOK DAN NON PEROKOK BERBASIS HUMAN EYE TRACKER TERHADAP GAMBAR PERINGATAN KESEHATAN PADA BUNGKUS ROKOK,” 2021, [Online]. Available: http://dx.doi.org/10.24893/jkma.v15i2.656

J. Arizpe, D. J. Kravitz, G. Yovel, and C. I. Baker, “Start Position Strongly Influences Fixation Patterns during Face Processing: Difficulties with Eye Movements as a Measure of Information Use,” PLoS One, vol. 7, no. 2, p. e31106, Feb. 2012, doi: 10.1371/journal.pone.0031106.

J. Hautala and T. Parviainen, “Gaze Position Reveals Impaired Attentional Shift during Visual Word Recognition in Dysfluent Readers,” PLoS One, vol. 9, no. 9, p. e108937, Sep. 2014, doi: 10.1371/journal.pone.0108937.

Yanto and R. F. Salim, “Evaluasi Tingkat Usability Situs Belanja Online X Menggunakan Tobii-Eye Tracker dan Face Reader,” Jurnal METRIS, vol. 22, no. 02, pp. 131–136, 2022, doi: 10.25170/metris.v22i02.2968.

C. Soria, Y. Arroyo, A. M. Torres, M. Á. Redondo, C. Basar, and J. Mateo, “Method for Classifying Schizophrenia Patients Based on Machine Learning,” J Clin Med, vol. 12, no. 13, p. 4375, Jun. 2023, doi: 10.3390/jcm12134375.

M. Nilashi et al., “Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees,” Heliyon, vol. 9, no. 4, p. e15258, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15258.

K. Okazaki et al., “Discrimination in the clinical diagnosis between patients with schizophrenia and healthy controls using eye movement and cognitive functions,” Psychiatry Clin Neurosci, vol. 77, no. 7, pp. 393–400, Jul. 2023, doi: 10.1111/pcn.13553.

V. Skaramagkas et al., “Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes,” IEEE Rev Biomed Eng, vol. 16, pp. 260–277, 2023, doi: 10.1109/RBME.2021.3066072.

Y.-L. Chien et al., “Game-Based Social Interaction Platform for Cognitive Assessment of Autism Using Eye Tracking,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 749–758, 2023, doi: 10.1109/TNSRE.2022.3232369.

M.-C. Sáiz-Manzanares, R. Marticorena-Sánchez, L.-J. Martín-Antón, L. Almeida, and M.-Á. Carbonero-Martín, “Application and challenges of eye tracking technology in Higher Education,” Comunicar, vol. 31, no. 76, Jul. 2023, doi: 10.3916/C76-2023-03.

R. A. McCutcheon et al., “Reappraising the variability of effects of antipsychotic medication in schizophrenia: a meta‐analysis,” World Psychiatry, vol. 21, no. 2, pp. 287–294, Jun. 2022, doi: 10.1002/wps.20977.

S. Lorente, J. Losilla, and J. Vives, “Instruments to assess patient comfort during hospitalization: A psychometric review,” J Adv Nurs, vol. 74, no. 5, pp. 1001–1015, May 2018, doi: 10.1111/jan.13495.

M. Gouda et al., “Towards clinical implementation: Establishing standardized operating procedures to limit the pre‐analytical sample handling effects on the novel Alzheimer’s disease blood‐based biomarkers,” Alzheimer’s & Dementia, vol. 19, no. S2, Jun. 2023, doi: 10.1002/alz.066756.

K. Okazaki et al., “Discrimination in the clinical diagnosis between patients with schizophrenia and healthy controls using eye movement and cognitive functions,” Psychiatry Clin Neurosci, vol. 77, no. 7, pp. 393–400, Jul. 2023, doi: 10.1111/pcn.13553.

V. Skaramagkas et al., “Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes,” IEEE Rev Biomed Eng, vol. 16, pp. 260–277, 2023, doi: 10.1109/RBME.2021.3066072.

H. Polat, “Brain functional connectivity based on phase lag index of electroencephalography for automated diagnosis of schizophrenia using residual neural networks,” J Appl Clin Med Phys, vol. 24, no. 7, Jul. 2023, doi: 10.1002/acm2.14039.

K. Okazaki et al., “Discrimination in the clinical diagnosis between patients with schizophrenia and healthy controls using eye movement and cognitive functions,” Psychiatry Clin Neurosci, vol. 77, no. 7, pp. 393–400, Jul. 2023, doi: 10.1111/pcn.13553.

M. Nilashi et al., “Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees,” Heliyon, vol. 9, no. 4, p. e15258, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15258.

M. Tanveer, J. Jangir, M. A. Ganaie, I. Beheshti, M. Tabish, and N. Chhabra, “Diagnosis of Schizophrenia: A Comprehensive Evaluation,” IEEE J Biomed Health Inform, vol. 27, no. 3, pp. 1185–1192, Mar. 2023, doi: 10.1109/JBHI.2022.3168357.

C. Soria, Y. Arroyo, A. M. Torres, M. Á. Redondo, C. Basar, and J. Mateo, “Method for Classifying Schizophrenia Patients Based on Machine Learning,” J Clin Med, vol. 12, no. 13, p. 4375, Jun. 2023, doi: 10.3390/jcm12134375.

Y. Shi et al., “Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface,” Nat Commun, vol. 14, no. 1, p. 3315, Jun. 2023, doi: 10.1038/s41467-023-39068-2.

K. Okazaki et al., “Discrimination in the clinical diagnosis between patients with schizophrenia and healthy controls using eye movement and cognitive functions,” Psychiatry Clin Neurosci, vol. 77, no. 7, pp. 393–400, Jul. 2023, doi: 10.1111/pcn.13553.

V. Skaramagkas et al., “Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes,” IEEE Rev Biomed Eng, vol. 16, pp. 260–277, 2023, doi: 10.1109/RBME.2021.3066072.

C. Morales-Pillado, B. Fernández-Castilla, T. Sánchez-Gutiérrez, E. González-Fraile, S. Barbeito, and A. Calvo, “Efficacy of technology-based interventions in psychosis: a systematic review and network meta-analysis,” Psychol Med, vol. 53, no. 13, pp. 6304–6315, Oct. 2023, doi: 10.1017/S0033291722003610.

A. Serrano-Mamolar, I. Miguel-Alonso, D. Checa, and C. Pardo-Aguilar, “Towards learner performance evaluation in iVR learning environments using eye-tracking and Machine-learning,” Comunicar, vol. 31, no. 76, Jul. 2023, doi: 10.3916/C76-2023-01.

M. Nilashi et al., “Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees,” Heliyon, vol. 9, no. 4, p. e15258, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15258.

M. Squires et al., “Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment,” Brain Inform, vol. 10, no. 1, p. 10, Dec. 2023, doi: 10.1186/s40708-023-00188-6.

Y. Shi et al., “Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface,” Nat Commun, vol. 14, no. 1, p. 3315, Jun. 2023, doi: 10.1038/s41467-023-39068-2.

V. Skaramagkas et al., “Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes,” IEEE Rev Biomed Eng, vol. 16, pp. 260–277, 2023, doi: 10.1109/RBME.2021.3066072.

C. Leblond-Menard and S. Achiche, “Non-Intrusive Real Time Eye Tracking Using Facial Alignment for Assistive Technologies,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 954–961, 2023, doi: 10.1109/TNSRE.2023.3236886.

F.-A. Meschberger-Annweiler et al., “An Attentional Bias Modification Task, through Virtual Reality and Eye-Tracking Technologies, to Enhance the Treatment of Anorexia Nervosa,” J Clin Med, vol. 12, no. 6, p. 2185, Mar. 2023, doi: 10.3390/jcm12062185.

Downloads

Published

2024-09-05

How to Cite

Saragih, S. F., Ginting, R. K. B. K., Simajuntak, Y. N., Nasution, A. A., & Indra, E. (2024). Tinjauan Sistematis: Teknik eye tracking untuk penyakit Skizofrenia. Jurnal Media Informatika, 6(1), 253-259. Retrieved from https://ejournal.sisfokomtek.org/index.php/jumin/article/view/4069