Perbandingan Metode Support Vector Machine (SVM) Dan Naive Bayes Pada Analisis Sentimen Ulasan Aplikasi OVO

Authors

  • Alvis Lowell Universitas Prima Indonesia
  • Audric Lowell Universitas Prima Indonesia
  • Kevin Candra Universitas Prima Indonesia
  • Evta Indra Universitas Prima Indonesia

DOI:

https://doi.org/10.55338/jumin.v7i1.5134

Keywords:

Sentiment Analysis, Support Vector Machine, Naive Bayes, OVO, Machine Learning

Abstract

In the rapidly evolving digital era, sentiment analysis has become crucial for understanding diverse user opinions. However, there is a gap in comparative studies on the effectiveness of machine learning methods for sentiment analysis of e-wallet applications in Indonesia. This research aims to compare the performance of Support Vector Machine (SVM) and Naive Bayes methods in sentiment analysis of user reviews for the OVO application, sourced from the Google Play Store. A total of 3,000 reviews were collected and processed through text preprocessing stages, including data cleaning, case folding, stopword removal, tokenizing, and stemming. Sentiment labeling was performed automatically using the VADER method, resulting in three categories: positive, neutral, and negative. The data was then transformed into numerical format using TF-IDF before being applied to the SVM and Naive Bayes models. Model performance was evaluated using a confusion matrix with metrics such as accuracy, precision, recall, and F1-score. The results showed that the SVM method delivered better outcomes with an accuracy of 89%, precision of 89%, recall of 89%, and F1-score of 88%, compared to the Naïve Bayes method, which achieved an accuracy of 86%, precision of 88%, recall of 86%, and F1-score of 87%. These findings can serve as a reference in selecting machine learning methods for sentiment analysis of e-wallet applications and assist OVO in improving service quality based on user feedback.

Downloads

Download data is not yet available.

References

R. Koli And S. Redekar, “A Review On Sentiment Analysis Methodologies, Practices And Applications With Machine Learning,” Int. J. Comput. Sci. Mob. Comput., Vol. 12, No. 6, Pp. 64–70, Jun. 2023, Doi: 10.47760/Ijcsmc.2023.V12i06.007.

J. Mishra, “Twitter Sentiment Analysis,” Int. J. Sci. Res. Eng. Manag., Vol. 07, No. 06, Jun. 2023, Doi: 10.55041/Ijsrem24071.

K. L. Tan, C. P. Lee, And K. M. Lim, “A Survey Of Sentiment Analysis: Approaches, Datasets, And Future Research,” Appl. Sci., Vol. 13, No. 7, P. 4550, Apr. 2023, Doi: 10.3390/App13074550.

F. R. Yuttama, A. Alfizi, And B. Widadi, “Pelatihan Financial Technology Untuk Bertransaksi Dan Berinvestasi,” J. Pengabdi. Masy. - Pimas, Vol. 1, No. 3, Pp. 147–152, Aug. 2022, Doi: 10.35960/Pimas.V1i3.816.

D. F. Harseno, “Analisis Faktor-Faktor Yang Memengaruhi Penggunaan E-Wallet Di Indonesia,” Abis Account. Bus. Inf. Syst. J., Vol. 9, No. 4, Nov. 2021, Doi: 10.22146/Abis.V9i4.70384.

S. Hartini, M. Kurniawati, And M. Ihwanudin, “Customer Review: Impact On Choice Confidence, Product Attitude, And Purchase Intention,” J. Posit. Sch. Psychol., Vol. 2022, No. 8, Pp. 5977–5992, 2022, [Online]. Available: Https://Journalppw.Com/Index.Php/Jpsp/Article/View/10868

H. Taufiqqurrahman, F. Tri Anggraeny, And M. Muharrom Al Haromainy, “Perbandingan Algoritma Naïve Bayes Dan K-Nearest Neighbor Pada Analisis Sentimen Ulasan Aplikasi Mypertamina,” Jati (Jurnal Mhs. Tek. Inform., Vol. 7, No. 6, Pp. 3934–3939, Jan. 2024, Doi: 10.36040/Jati.V7i6.7801.

K. A. Rokhman, B. Berlilana, And P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” J. Inf. Syst. Manag., Vol. 3, No. 1, Pp. 1–7, Jan. 2021, Doi: 10.24076/Joism.2021v3i1.341.

W. Ningsih, B. Alfianda, R. Rahmaddeni, And D. Wulandari, “Perbandingan Algoritma SVM Dan Naïve Bayes Dalam Analisis Sentimen Twitter Pada Penggunaan Mobil Listrik Di Indonesia,” Malcom Indones. J. Mach. Learn. Comput. Sci., Vol. 4, No. 2, Pp. 556–562, Feb. 2024, Doi: 10.57152/Malcom.V4i2.1253.

M. Iqbal, A. Davy Wiranata, R. Suwito, And R. Faiz Ananda, “Perbandingan Algoritma Naïve Bayes, Knn, Dan Decision Tree Terhadap Ulasan Aplikasi Threads Dan Twitter,” Media Online, Vol. 4, No. 3, Pp. 1799–1807, 2023, Doi: 10.30865/Klik.V4i3.1402.

A. Bagus Mustriyanto, Muhammad Habibi, D. Subekti, And F. Syahruddin, “Perbandingan Metode Decision Tree Dan Naive Bayes Classifier Pada Analisis Sentimen Pengguna Layanan Pt Perusahaan Listrik Negara (Pln),” Teknomatika J. Inform. Dan Komput., Vol. 15, No. 2, Pp. 53–61, Oct. 2022, Doi: 10.30989/Teknomatika.V15i2.1131.

S. W. Iriananda, R. W. Budiawan, A. Y. Rahman, And I. Istiadi, “Optimasi Klasifikasi Sentimen Komentar Pengguna Game Bergerak Menggunakan SVM, Grid Search Dan Kombinasi N-Gram,” J. Teknol. Inf. Dan Ilmu Komput., Vol. 11, No. 4, Pp. 743–752, Aug. 2024, Doi: 10.25126/Jtiik.1148244.

M. Veziroğlu, E. Veziroğlu, And İ. Ö. Bucak, “Performance Comparison Between Naive Bayes And Machine Learning Algorithms For News Classification,” In Bayesian Inference - Recent Trends, Intechopen, 2024. Doi: 10.5772/Intechopen.1002778.

A. Maulana Komarudin, A. Nurul Huda, And D. Agistira, “Penerapan Teknik Web Scraping Pada Situs Imdb Dengan Node Js,” J. Siliwangi Seri Sains Dan Teknol., Vol. 8, No. 2, Dec. 2022, Doi: 10.37058/Jssainstek.V8i2.6371.

E. Sutoyo And A. Almaarif, “Twitter Sentiment Analysis Of The Relocation Of Indonesia’s Capital City,” Bull. Electr. Eng. Informatics, Vol. 9, No. 4, Pp. 1620–1630, Aug. 2020, Doi: 10.11591/Eei.V9i4.2352.

R. Rinandyaswara, Y. A. Sari, And M. T. Furqon, “Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi),” J. Teknol. Inf. Dan Ilmu Komput., Vol. 9, No. 4, P. 717, Aug. 2022, Doi: 10.25126/Jtiik.2022934707.

F. A. Muttaqin And A. M. Bachtiar, “Implementasi Teks Mining Pada Aplikasi Pengawasan Penggunaan Internet Anak ‘Dodo Kids Browser,’” J. Ilm. Komput. Dan Inform., Pp. 1–8, 2016.

H. C. Husada And A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan Di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, Vol. 10, No. 1, Pp. 18–26, Feb. 2021, Doi: 10.34148/Teknika.V10i1.311.

A. M. Pravina, I. Cholissodin, And P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan Pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. 3, No. 3, Pp. 2789–2797, 2019.

A. Muhammadin And I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM Dan NBC,” Reputasi J. Rekayasa Perangkat Lunak, Vol. 2, No. 2, Pp. 85–91, Dec. 2021, Doi: 10.31294/Reputasi.V2i2.785.

M. P. Dwi Cahyo, Widodo, And B. Prasetya Adhi, “Kinerja Algoritma Support Vector Machine Dalam Menentukankebenaran Informasi Banjir Di Twitter,” Pinter J. Pendidik. Tek. Inform. Dan Komput., Vol. 3, No. 2, Pp. 116–121, Dec. 2019, Doi: 10.21009/Pinter.3.2.5.

Downloads

Published

2025-01-24

How to Cite

Lowell, A., Lowell, A., Candra, K., & Indra, E. (2025). Perbandingan Metode Support Vector Machine (SVM) Dan Naive Bayes Pada Analisis Sentimen Ulasan Aplikasi OVO. Jurnal Media Informatika, 7(1), 125-133. https://doi.org/10.55338/jumin.v7i1.5134

Most read articles by the same author(s)